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31. Juli 2019

Gutachter

Prof. Dr. Martin Butz
Cognitive Modeling

Wilhelm-Schickard-Institut für
Informatik

Universität Tübingen
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Abstract

Our world can be described as a hierarchical structure of interrelated discriminative
objects. Due to limited human resources, datasets labeled at this level of detail are
non-existent. This work presents a novel operation that could help to extract lo-
cal explanatory factors and their interrelations. This operation consists of a locally
embedded autoencoder using recent techniques to encourage disentanglement. This
locally embedded autoencoder is combined with a supervised to a semi-supervised
learning task. For the proposed operation an analysis is performed that contains a
comparison against max-pooling, a test of the synergy between reconstruction and
supervised objective, and an investigation into the effects on sample complexity, ro-
bustness against adversarial attacks, and equivariance to spatial transformations.
The learned reduction function outperforms max-pooling in terms of forwarding
task-relevant information. Evidence suggests a decreased sample complexity. Em-
pirical results show that convolutional neural networks are equivariant to transla-
tion and scale transformations until the last layer with this work also providing
equivariance to orientation transformations. While a stronger emphasis on recon-
struction performance does not correlate with improved supervised performance,
both objectives can be pursued without negative impact.
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Kurzfassung

Unsere Welt kann als hierarchische Struktur aus unterschiedlichen zusammenhän-
genden Objekten betrachtet werden. Aufgrund des hohen Arbeitsaufwands existiert
kein Datensatz mit einem solchen Detailgrad. Mit dieser Arbeit wird eine neuartige
Operation präsentiert, die dabei helfen könnte lokale beschreibende Faktoren und
deren Zusammenhang zu extrahieren. Diese Operation ist ein lokal eingebetteter
Autoencoder, der die neuesten Techniken verwendet, um eine Trennung der Ko-
dierung in ihre zugrunde liegenden beschreibenden Faktoren zu erzielen. Der lokal
eingebettete Autoencoder wird mit einer überwachten Aufgabe kombiniert und ist
daher dem semi-überwachten Lernen zuzuordnen. In Bezug auf die vorgestellte Ope-
ration wird ein Vergleich zur Max-Pooling Operation gezogen, das Zusammenspiel
zwischen Rekonstruktionsziel und Klassifikationsziel untersucht und analysiert, wie
äquivariant zu räumlichen Transformationen, wie dateneffizient und wie robust ge-
gen Adversarial Attacks diese ist. Die erlernte Reduktionsfunktion can wichtige
Informationen besser weiterleiten als Max-Pooling. Es gibt Hinweise darauf, dass
diese Methode zu einer höheren Dateneffizienz führt. Nach den empirischen Ergeb-
nissen sind Convolutional Neural Networks bis auf die letzte Schicht äquivariant
zu Verschiebungen und zu Skalierungen. Die in dieser Arbeit vorgestellte Opera-
tion ist darüber hinaus auch äquivariant zu Rotationen. Eine höhere Gewichtung
der Rekonstruierbarkeit hängt nicht mit einer besseren Klassifikationsperformanz
zusammen. Es ist möglich beide Ziele gleichermaßen zu optimieren, ohne eines von
beiden negativ zu beeinflussen.
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Chapter 1

Introduction

Visual processing in our brain works in stages with every stage grouping features
into higher-order objects (Ward, 2015). Every level in this hierarchy could be de-
fined as a discriminative representation. In computer vision, object recognition is
concerned with computer algorithms that perform classification, localization and
detection of objects within digital images. We humans are very good at detecting
objects within images. We can mentally cut an object out of a 2D image and rotate
it as a coherent 3D model (Shepard and Metzler, 1971). If we perceive such a hierar-
chical structure, this is no surprise as we know all subobjects, their properties, and
their spatial interrelation. Artificial neural networks (ANNs) are machine learning
(ML) techniques that currently are the state-of-the-art in object recognition. Their
performance enables computers to perform tasks that were previously only solvable
by humans. ML techniques approximate functions by examining a vast amount of
examples. Convolutional neural networks (CNNs) are currently the most popular
ANN variant in object recognition. Technically speaking, CNNs do have multiple
stages of representations but these are highly entangled without having explicit hi-
erarchies or explicit discriminative factors. Object recognition tasks generally only
focus on the discrimination of objects from a hierarchy layer. There is no informa-
tion on discriminative factors for the intermediate representations. This is mostly
because example data has to be provided by humans and that the sheer number of
necessary examples makes an annotation at this level of detail impossible. A tech-
nique is needed that learns to disentangle these intermediate representations into
their explanatory factors without examples (Bengio et al., 2013). To preserve the
spatial interrelation between explanatory factors, it might be important to preserve
spatial information in these intermediate representations (Hinton et al., 2011).

This work presents the locally embedded autoencoder (LEA), a novel operation
that supports learning a hierarchy of explanatory factors. It uses recent techniques
from the field of unsupervised learning to learn meaningful representations with-
out examples. Especially recent autoencoder (AE) techniques that encourage the
disentanglement of representations into their explanatory factors are used. The op-
eration uses windowing and stride, which are common techniques in CNNs, to focus
on objects of different hierarchical levels. The reconstruction objective of AEs is
used to preserve spatial information by obtaining equivariance to spatial transfor-
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Chapter 1 Introduction

mations. At its core, this work is about representation learning. It is completed by
analyzing the usefulness of these representations for a supervised objective. Both
objectives are combined in a semi-supervised learning setting.

1.1 Background

Bengio et al. (2013) advocate for the importance of the disentanglement of interme-
diate representations into explanatory factors. This perspective highly correlates
with the motivation behind this work. To tackle this idea, recent AE techniques
that encourage disentangled representations are used. Kosiorek et al. (2019) empha-
sized the importance of spatial interrelations for object recognition. This matches
the notion of a hierarchical composition of objects and their spatial interrelation
(Hinton et al., 2011). In this work, the notion of spatial interrelations is approached
by preserving spatial information through the reconstruction objective. The notion
of hierarchical objects is addressed by local views. These local views are the result
of a windowing operation.

In the beginning, AEs were used as an unsupervised preprocessing method (Bal-
lard, 1987; Hinton, 2006). This did prove to be a successful method to reduce
the dimensionality without losing essential information for subsequent supervised
tasks. Instead of applying AEs only as a preliminary method to a supervised task,
this work integrates AEs in the training process of supervised tasks.

Supporting supervised with unsupervised learning is a longstanding research
topic. Existing semi-supervised learning approaches implement a joint training
of supervised and autoencoder objectives (Ranzato and Szummer, 2008; Valpola,
2015; Rasmus et al., 2015; Zhang et al., 2016). They either used a network of
stacked AEs or added AEs onto an existing supervised learning model as an aux-
iliary objective. Although these methods were successful at improving supervised
tasks by adding an encoding objective, they did not enforce an explicit hierarchical
structure of explanatory factors. This work extends on these approaches by encour-
aging disentanglement within the codes, similar to (Sønderby et al., 2016; Siddharth
et al., 2017). Additionally, this work enforces a hierarchical structure by encoding
local views and focuses on a more strict separation between both objectives by
using alternate training.

1.2 Objective

The objective of this work is subdivided into four parallel phases, design, imple-
mentation, exploration, and analysis. In the design phase, an operation was con-
ceptualized that supports an image-based supervised learning task by learning to
extract local explanatory factors and their interrelations in an unsupervised learn-
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1.3 Outline

ing manner. The operation was designed for a parallel training of both objectives.
In the implementation phase, the operation was implemented using a popular ML
framework and the respective programming language. Integrability and flexibility
were important requirements for this implementation. Integrability hereby refers to
the integration into existing architectures or more generally an easy usage within
the current paradigm of the respective ML framework. Flexibility hereby refers to
the standardization of internal methods so that these can be quickly swapped to
easily perform experiments. In the exploration phase, different ideas and concepts
were tested in short and non-exhaustive experiments to get a feeling for internal
workings. The experience and knowledge gained from these explorations guided
the implementation and analysis phase. Within the analysis phase, the operation
was evaluated and tested for potential improvements and underlying hypotheses.
For a sound analysis, this work defined appropriate metrics, visualizations, base-
lines, datasets, and tests. The tests showed the capabilities regarding unsupervised
learning of local explanatory factors. One test evaluated if spatial information is
preserved. Since the used AEs perform a reduction, this operation was directly
compared against a pooling operation. Another test examined potential improve-
ments in sample complexity and robustness. A final test investigated the effect of
this operation on the associated supervised learning task.

1.3 Outline

This work starts with Chapter 2, explaining techniques this work builds upon and
related terms.

Chapter 3 introduces the LEA operation and the considerations that went into
different decisions. The main points are the implementation of hierarchical levels,
the integrability of the operation, and the choice between different autoencoder
types.

Chapter 4 lays out how the research for this work was conducted and how the
quality of reported results and findings is ensured. For this, it introduces different
metrics and visualization that were used during the execution of experiments and
analyses. These metrics and visualizations are also used to display results and
findings.

Chapter 5 gives insight into the LEA and elaborates on important results of the
various conducted experiments. This chapter tests disentanglement with AEs and
the discrimination of local explanatory factors. It examines if the reconstruction
objective helps to preserve spatial information. The loss in information for different
window sizes is determined and compared against standard max-pooling. The
performance on dataset subsets of different sizes is evaluated to measure the sample
complexity. This chapter also takes a look into the robustness against adversarial
attacks. Finally, the effect of the usage as auxiliary regularization on a supervised
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Chapter 1 Introduction

learning task is analyzed.
In Chapter 6, downsides to the proposed operation and the presented results are

identified.
Finally, Chapter 7 completes this work by summarizing the results and pointing

out open questions and potential future research.
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Chapter 2

Foundations

This chapter provides a shallow introduction to ML with a focus on artificial neural
networks (ANNs). This introduction is followed by an extended look at ANN
techniques. Finally, an explanation of spatial transformations and representational
properties is given.

2.1 Machine Learning

ML tries to solve problems by looking at examples. The goal is to achieve general-
ization that is the ability to solve the problem for unseen data. Given there exists
a function f that can solve this problem, then the examples can be considered as
samples of this function. The goal is to approximate f by using these samples as
references. Given a perfect approximation, f should output the correct result for
an input x. The samples used during this approximation are called training data.
The unseen samples are used to test the generalization and therefore are called test
data.

For example, a simple problem is to fit a line to a given set of example data
points. To represent this line, the first-degree polynomial can be used, as shown in
Eq. (2.1).

f(x) = mx+ b (2.1)

The goal is to find values for the parameters m and b that result in an accurate
approximation of f with respect to the arguments x. Substituting the parameters
with θ and adding subscripts results in Eq. (2.2).

f(x) = θ1x1 + θ0 (2.2)

Further generalizing this equation yields Eq. (2.3), given x0 = 1.

f(x) =
∑
n

θnxn (2.3)

The line fitting example is very similar to an ANN class, the multilayer perceptron
(MLP). In fact, Eq. (2.3) shows the linear activation function calculation for a
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Chapter 2 Foundations

neuron of a linear MLP. The subscript i in Eq. (2.3) signifies that for a neuron
multiple inputs can be used. Multiple neurons for the same inputs form a layer. If all
inputs are connected to all neurons this layer is called a fully-connected layer. These
layers can be stacked together consecutively. For a linear MLP, multiple layers can
be reduced to a layer. This implies that a linear MLP can only approximate linear
functions. To approximate non-linear functions, non-linear activation functions are
used.

2.1.1 Types of Training

The training of ML techniques can be categorized into different types (Russell and
Norvig, 2010). For this work, the differentiation between supervised, unsupervised
and semi-supervised learning is important. In supervised learning, the training
provides input features and expected output labels. A supervised ML technique
is optimized to learn a mapping between the features and labels. In unsupervised
learning, the training provides only input features and the ML technique is opti-
mized to find patterns within this data. Semi-supervised learning combines both,
supervised and unsupervised learning (Chapelle et al., 2010). It often refers to a
learning task where a small amount of training data with labels is used to handle
more training data without labels. In this work semi-supervised learning only refers
to the combination of supervised and unsupervised learning in that unsupervised
methods learn patterns that are used within a supervised method.

2.1.2 Activation Functions

An activation function φ maps values into the desired range. During the experi-
mentation phase of this work sigmoid and rectified activation functions were used.
For the results in this work, only the rectified activation functions are used.

The sigmoid function is a monotonic curve that is bound by an upper and a
lower horizontal asymptote. Meaning it is either only increasing from the lower to
the upper horizontal asymptote or vice versa. One important sigmoidal activation
function is the logistic function shown in Eq. (2.4).

φ(x)sig =
1

1 + e−x
(2.4)

The logistic function is bound by (0, 1), looks like a smooth step function, and is
often used for outputs that expect a probability value.

Another important sigmoidal activation function is the hyperbolic tangent func-
tion shown in Eq. (2.5).

φ(x)tanh =
ex − e−x
ex + e−x

(2.5)
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2.1 Machine Learning

The hyperbolic tangent function is bound by (−1, 1) and symmetric to the origin.
Based on the derivative of sigmoidal functions, their gradient is generally small. In
multilayer networks, the gradient decreases from layer to layer up to insignificance.
This issue is called the vanishing gradient.

The rectifier function is a piecewise function that maps the identity for positive
values without upper bound and rectifies negative values towards zero. This func-
tion is also a non-linear function, despite its partial linearity. Since the derivative of
rectifier functions is one for positive values the gradient does not vanish. The recti-
fied linear unit (ReLU) (Nair and Hinton, 2010) shown in Eq. (2.6) is the standard
rectifier function that returns the identity for positive values and zero for negative
values, therefore being bound by [0,∞).

φReLU (x) =

{
0 for x < 0

x for x ≥ 0
(2.6)

While a ReLU has no vanishing gradient, the derivative for negative values is zero
and therefore the gradient is also zero. This problem is called a dying ReLU and
is solved with other rectifier variants.

One variant is the leaky ReLU (Maas et al., 2013) shown in Eq. (2.7).

φLeaky ReLU (x) =

{
0.01x for x < 0

x for x ≥ 0
(2.7)

Contrary to a ReLU the leaky ReLU also maps negative values downscaled by a
constant weight, therefore being bound by (−∞,∞) instead.

Another variant is the exponential linear unit (ELU) (Clevert et al., 2015) shown
in Eq. (2.8).

φELU (x) =

{
a(ex − 1) for x ≤ 0 with a ≥ 0

x for x > 0
(2.8)

The ELU exponentially decreases towards a lower horizontal asymptote for high
negative values, therefore being bound by (−a,∞) with −a being the horizontal
position of the asymptote.

Softplus (Glorot et al., 2011) is a smooth variation of the ReLU and therefore
similarly bound by (0,∞), with zero as an asymptote. The equation of softplus
shown in Eq. (2.9) is not piecewise and therefore not directly a rectifier function.

φSoftplus (x) = ln(1 + ex) (2.9)

7



Chapter 2 Foundations

2.1.3 Gradient Descent Optimization

The function approximation through a parameterized model is a parameter opti-
mization problem. Given a random parameter assignment, the function output for
examples completely differs from the expected results. This difference is referred
to as loss and is used to determine the partial responsibility of every parameter
regarding this loss. This process is called backpropagation and the partial respon-
sibilities as a whole are the gradient (Linnainmaa, 1970, 1976). Formally, as shown
in Eq. (2.10), the gradient of the loss L with respect to the parameters θ, denoted
∇θL, is a vector of all partial derivatives (Shalev-Shwartz and Ben-David, 2014).

∇θL =

(
∂L

θ1
, . . . ,

∂L

θn

)
(2.10)

The function and its parameters are hereby represented as an ANN. Gradient
descent (Cauchy, 1847; Hadamard, 1908; Kelley, 1960) is an iterative optimiza-
tion that tries to minimize the loss by going towards the negative gradient. The
parameter update for a gradient decent step is shown in Eq. (2.11),

∆θ = −η · ∇θL (2.11)

where the learning rate η regulates the parameter change. Since backpropagation
for ANNs proved to work well (Werbos, 1974), it is the de facto standard for the
current generation of ANNs.

For this work, it is important to mention that multiple losses for one function or
parts of that function can be optimized in parallel. There are two ways to optimize
such a case, alternate the optimization between these losses or optimize a joint loss.

Using batches of training examples is an established practice to reduce the time
to convergence due to a smoother loss surface with a slight tradeoff in generalization
(Clearwater et al., 1989). It is also common to shuffle the training data to achieve
a stochastic process, therefore called stochastic gradient descent (SGD) (Robbins
and Monro, 1951). Adaptive moment estimation (Adam) (Kingma and Ba, 2014)
is an SGD variant used in this work that smooths the gradient by estimates of its
mean and uncentered variance. The parameter update for an Adam step is shown
in Eq. (2.12),

m′ = β1 ·m+ (1− β1) · ∇θL

v′ = β2 · v + (1− β2) · ∇θL
2

∆θ = −η · 1√
v′ + ε

·m′
(2.12)

where m′ and v′ are exponentially moving averages of the gradient and the squared
gradient, respectively, with an exponential decay bayed on the hyperparameters β1
and β2.
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2.1 Machine Learning

2.1.4 Regularization

If a trained ANN is overfitting, it performs well (i.e. has a low loss) on the training
data but performs worse (i.e. has a higher loss) on the test data. An overfitting
network did not learn a generalized function of the objective but rather learned
characteristics of the training data (Poole and Mackworth, 2017). Generalization is
one important property that the learned function should satisfy. Regularization is a
technique often used to support ANNs to satisfy such properties. The regularization
can, for instance, be done by adjusting the loss definition or by defining a joint loss of
the original objective and a regulating objective (Goodfellow et al., 2017). Another
type of regularization is to control neuron activity. There are many more types of
regularization but they are irrelevant for this work and hence not mentioned here.

2.1.5 Normalization

Besides using regularization, normalization can adjust the data to satisfy specific
properties. This section introduces some normalization functions, denoted by ψ.

Min-max normalization is a technique that adjusts the value range while preserv-
ing the proportions. The min-max normalization as shown in Eq. (2.13) scales the
data into the range [0, 1] (Shalev-Shwartz and Ben-David, 2014).

ψmin-max (x) =
x−min(x)

max(x)−min(x)
(2.13)

Standardization as shown in Eq. (2.14) is another normalization technique that
adjusts the data to have a zero mean and a unit standard deviation (Shalev-Shwartz
and Ben-David, 2014).

ψstandard (x) =
x− µ(x)

σ(x)
(2.14)

Data in the range [0, 1] can be transformed to any range with a scaling term γ
and a shift term β as shown in Eq. (2.15).

transform(x) = γ · ψ(x) + β (2.15)

Batch normalization is a popular normalization method that uses standardization
on batch-level and this transformation with γ and β as learned parameters (Ioffe
and Szegedy, 2015).

2.1.6 Windowing

Windowing is a partition operation that splits the input data into smaller evenly
shifted windows. The window size defines the size of the windows and the stride
defines the size of the shifts. Depending on the stride, the windows overlap, are

9



Chapter 2 Foundations

side by side or have spacing between them. Overlapping means that single values
can be present in multiple windows. Spacing means that the values not covered by
windows are not included.

If the window size with the given stride does not fit the input data without
overlapping an edge, padding is used. The most common padding variants are
zero-padding an no-padding. Zero-padding adds zeros to the edge of the input data
until the window size with the given stride fits. Without padding only the data
area for which the window size with the given stride fits is covered, the remaining
data area is ignored.

2.2 Filter Learning

In image processing, a filter can be used, for example, to sharpen or blur an image
or to highlight edges. These effects can be achieved by applying a kernel to an
image. Such a kernel is typically a small matrix (e.g. 3×3 px or 5×5 px) that
contains a special pattern. The discrete convolution operation takes the sum of
the pointwise multiplications between the kernel matrix and the reversed window
matrix (le Rond d’Alembert, 1754). For a whole image, discrete convolution is
applied to every window. The discrete convolution operation (∗) for a pixel with
position x and y a window of the image I and a kernel matrix K is defined in
Eq. (2.16).

I[x, y,m] = K ∗ I =
∑
c

i∑
u=−i

i∑
v=−i

K[u, v, c] · I[x− u, y − v, c] (2.16)

The kernel matrix is hereby indexed from −i to i and the respective indices u and
v are applied in a way that the window is reversed. The result for a pixel is the
sum of all pixelwise products and all channels c. For example, the application of
a Sobel kernel (Sobel and Feldman, 1968) to highlight diagonal edges is shown in
Fig. 2.1.

Instead of using handcrafted kernels like the Sobel kernel, the kernel values can
be treated as parameters and therefore optimized for a given task (Fukushima,
1980). As with an MLP, backpropagation can be used to perform this optimization
(LeCun et al., 1989). For an image, multiple kernels can be learned to increase
the expressiveness. Such a filter, consisting of multiple kernels and the convolu-
tions thereof is called convolutional layer. As with an MLP layer, the output of
a convolutional layer is adjusted by a non-linear activation function. The CNN
architecture consists of multiple convolutional layers (LeCun et al., 1999).

The actual implementation of a convolutional layer is often using the cross-
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Figure 2.1: Discrete convolution of a Sobel kernel matrix and a window of size 3×3 px
to highlight diagonal edges for an input image of size 4×4 px with a stride of one.

correlation operation as shown in Eq. (2.17) (Goodfellow et al., 2017).

I[x, y,m] = K ∗ I =
∑
c

i∑
u=−i

i∑
v=−i

K[u, v, c] · I[x+ u, y + v, c] (2.17)

The only difference between discrete convolution and cross-correlation is that in
cross-correlation the window is not reversed. Since the kernel parameters are
learned, reversing the window is unnecessary and just produces overhead. This
work will refer to cross-correlation as convolution.

2.3 Pooling

In CNNs, pooling is an operation to reduce the dimensionality and the effect of
shifts and distortions (Goodfellow et al., 2017). Dimensionality reduction can be
necessary to ensure computational efficiency when high dimensional data is used.
Reducing the effect of shifts and distortion increases the robustness.

Pooling is a non-linear operation that is applied on a per-window basis, again
using the windowing operation. It reduces all input values from one window to
a scalar value. Unlike in convolution, pooling is applied on a per-channel basis.
Compared to a convolutional layer, pooling is a fixed method without any learnable
parameters. Taking the mean, minimum, or maximum are the most commonly used
reduction methods. Depending on the reduction method, the operations are called
max-pooling (Zhou and Chellappa, 1988), min-pooling, or average-pooling. For
example, the max-pooling function shown in Eq. (2.18), reduces a window to its
max value per channel.

11
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I[x, y, c] = max(w) where w =

I[x− i, y − i] · · · I[x+ i, y − i]
...

. . .
...

I[x− i, y + i] · · · I[x+ i, y + i]

 (2.18)

2.4 Representation Learning

For humans, it is way easier to solve a problem if it is represented in a way that
can be directly approached. For example, every human tasked to read a digital
document would struggle if it is represented by bits instead of a character encoding.
Similarly, ANNs learn intermediate representations that support its structure to
solve a given task.

This representation could be sparse, i.e. have a high ratio of zero values to non-
zero values. Such sparsity in an internal representation stems from either a sparse
activity or sparse connectivity of neurons (Thom and Palm, 2013).

Variations in a data distribution can be disentangled into representations of ex-
planatory factors (Bengio et al., 2013). In contrast to sparsity, the disentanglement
property directly refers to the information contained within the representation. A
representation, therefore, can be disentangled without being sparse. Thus far, there
is no consensus on what defines a disentangled representation (Higgins et al., 2018;
Mathieu et al., 2019). This work uses a restrictive definition in which a fully dis-
entangled representation is defined as a representation that captures at most one
explanatory factor per value (Eastwood and Williams, 2018; Kim and Mnih, 2018).

This work exclusively addresses the representations learned by autoencoders
(AEs) and therefore introduces AEs and multiple used variants in this section.

2.4.1 Standard Autoencoder

Encoding is a process that transforms data into another representation. In AEs
the encoding process targets a reduced representation that preserves important
properties (Goodfellow et al., 2017). Since it is not clear what the important
properties are, AEs use a trick. Instead of directly encoding some input, the goal
is to reconstruct the input. With a bottleneck at the center, the AE learns a code
representation that preserves all properties that are necessary to reconstruct the
input and throws away the rest. The important properties are not predefined and
for that reason, this is an unsupervised training method.

The success of a reconstruction is defined by the similarity compared to the
input data. The similarity definition, therefore, determines which properties are
important for a successful reconstruction. For humans, these properties are the
explanatory factors of the input data. The properties learned by a standard AE
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2.4 Representation Learning

can be inexplicable but have to contain the information that most defines a given
sample with respect to the training data.

This work exclusively uses pixel distance-based similarity metrics. These metrics
are the mean absolute error (MAE), the mean squared error (MSE), and the log
loss (Goodfellow et al., 2017; Shalev-Shwartz and Ben-David, 2014). Since in the
context of ANNs the difference between input x and reconstruction y is called loss
L, the respective metric is called loss function L(x, y). The loss function is evaluated
for every pixel i and averaged over all N pixels.

The MAE as shown in Eq. (2.19) calculates the average distance between two
data samples.

L(x, y) =
1

N

N∑
i=1

|yi − xi| (2.19)

In addition to MAE, the MSE as shown in Eq. (2.20) especially highlights larger
distances.

L(x, y) =
1

N

N∑
i=1

(yi − xi)2 (2.20)

The log loss as shown in Eq. (2.21) is based on probability theory and therefore
only works for input and reconstruction pixel values in the range of [0, 1].

L(x, y) =
1

N

N∑
i=1

−(xi log(yi) + (1− xi) log(1− yi)) (2.21)

This loss especially punishes if the model makes wrong predictions it is certain
about and pushes predictions towards binary decisions.

2.4.2 Encoder and Decoder Architecture

The encoder performs a data reduction and the decoder performs a data expansion.
Methods used within the encoder and decoder need to support the respective size
change. Since in a fully-connected layer, as introduced in Section 2.1, the number of
used neurons defines the output size, it can be used for the encoding and decoding
process. The output size of a convolutional layer, as introduced in Section 2.2, is
smaller or equal to the input size depending on the stride size. The convolutional
layer, therefore, can only be used for the encoding process. The decoder counterpart
to the convolutional layer is the transposed convolutional layer. The result of
the transposed convolution is the gradient of a convolutional layer with the same
hyperparameters (Dumoulin and Visin, 2016). Common AE implementations use
some combination of fully-connected and convolutional layers for the encoder as
well as some combination of fully-connected and transposed convolutional layers
for the decoder.
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Figure 2.2: Spatial Broadcast for an input vector c and a target size of 4×4 px concate-
nated with the x and y coordinates of range [−1, 1].

In addition to the common encoder-decoder variants, this work uses the Spatial
Broadcast decoder (Watters et al., 2019). At its core, the Spatial Broadcast decoder
is an alternative to the transposed convolution. Instead of learning how to distribute
the code to render objects at correct spatial positions, the codes are broadcasted
and supplemented by their spatial position. That reduces the decoding task to a
kind of threshold function for objects at every spatial position. More precisely, the
Spatial Broadcast method takes a vector c as input and tiles it to a target output
size. Tiling hereby refers to duplicating c in the x and y dimension until it has the
correct width and height. This tensor is extended by concatenating the x and y
coordinates of every point in the channel dimension. The coordinates are linearly
distributed over the range [−1, 1]. An example application of this method is shown
in Fig. 2.2.

In this work, fully-connected layers, convolutional layers, and the Spatial Broad-
cast decoder are abbreviated in graphics and plots with fc, conv, and sb, respec-
tively.

2.4.3 Activation Restricted Autoencoder

The goal of a k-sparse AE (Makhzani and Frey, 2013) is to produce sparse code
representations. To achieve sparsity the k-sparse AE simply reduces the code rep-
resentation to its k largest values. Therefore the top-k selection function topk(z)
that returns the indices of the k largest activations of the code representation z is
introduced. During training, only the k largest activations are used and the rest is
set to zero. During testing Makhzani and Frey (2013) observed that topak(z) results
in better results for subsequent classification objectives, where a ≥ 1 is manually
selected. The application of this process is formulated in Eq. (2.22).
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zi =


zi for i ∈ topk(z) when training

zi for i ∈ topak(z) when testing where a ≥ 1

0 else

(2.22)

2.4.4 Variational Autoencoder

The objective of a variational autoencoder (VAE) (Kingma and Welling, 2013)
is to find an isotropic multivariate Gaussian distribution N (µ, σ2I) for the code
representation z from which samples like the input are likely. Since a Gaussian
distribution can be described by its mean µ and standard deviation σ i.e. N (µ, σ2),
the encoder is trained to learn these two parameters. Given such a distribution that
captures the essentials of the input data, the parameters µ and σ of the distribution
can be used to draw new samples from this distribution. As shown in Eq. (2.23),
the sampling method uses a random value ε drawn from an isotropic multivariate
standard Gaussian N (0, I) to generate new samples from µ and σ.

z = µ+ σ � ε where ε N (0, I) (2.23)

As regularization, the Kullback–Leibler (KL) divergence is used to reduce the
divergence between the distribution generated for z and an isotropic multivariate
standard Gaussian N (0, I) as shown in Eq. (2.24).

KL(µ, σ) =
J∑
j=1

µ2
j + σ2

j − log(σ2
j )− 1 where J = #code variables (2.24)

Minimizing this divergence restricts the code representation capacity, with the rep-
resentation z not holding any information about the input x when the divergence
is zero (Burgess et al., 2018). This regularization can be seen as an information
bottleneck and as a consequence of fewer features encoded in the representation as
a way to improve statistical independence between code variables (Higgins et al.,
2017; Burgess et al., 2018). Intuitively the goal of this independence is that every
code variable captures another independent feature of the input data i.e. the dis-
entanglement of the code representation. The total loss function L(x, y) combines
the KL divergence regularization KL(µ, σ) and a reconstruction loss RL (x, y) as
shown in Eq. (2.25).

L(x, y) =
1

2
KL(µ, σ) + RL (x, y) (2.25)
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2.4.5 Capacity-restricted Variational Autoencoder

Since the KL divergence term is responsible for the information bottleneck, in-
creasing its weight leads to fewer features being encoded in the code representation
(Burgess et al., 2018). The fewer features encoded in the representation the more
statistically independent the code variables appear (Higgins et al., 2017). To in-
crease the weight of the KL divergence term the β term is added to the standard
VAE formulation (Higgins et al., 2017). As shown in Eq. (2.26), β is a simple scalar
weighting factor of the KL divergence term (Higgins et al., 2017).

L(x, y) = βKL(µ, σ) + RL (x, y) where β > 1 (2.26)

For higher values of β, a better disentanglement of the code representation can
be perceived (Higgins et al., 2017). The tradeoff of this gain in perceived disentan-
glement is a loss in reconstruction quality such as blurrier reconstructions and the
sacrifice of minor features in the code representation (Higgins et al., 2017).

2.4.6 Capacity-controlled Variational Autoencoder

Given that a low KL divergence to an isotropic multivariate standard Gaussian
restricts the code representation capacity, then a high divergence allows a high
capacity (Burgess et al., 2018). Hence, gradually increasing the divergence also
allows the code representation to gradually encode more features (Burgess et al.,
2018). To achieve this effect, the KL divergence is controlled by a term C which is
gradually increased during training (Burgess et al., 2018). This new loss function
is shown in Eq. (2.27),

L(x, y) = γ|KL(µ, σ)− C|+ RL (x, y) (2.27)

where γ ensures that the actual divergence is close to the control value C (Burgess
et al., 2018).

2.5 Spatial Transformations

Images are a projection of the shape and visual appearance of objects within a
scene. For humans, it is relatively easy to identify an individual object indepen-
dent of its size, rotation, position, and lighting (Shepard and Metzler, 1971). ML
algorithms optimally should be able to detect individual objects independent of
these types of spatial transformations. This work differentiates between four spa-
tial transformations. These transformations are the translation, rotation, scale, and
illumination.
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Translation, rotation, scale, and illumination are transformations that refer to a
position, angle, size, or lighting change of an object within an image, respectively.
An ML algorithm should detect an object in an image independent of its position
or location of the camera, its orientation or the orientation of the camera, its size or
distance to the camera, and its color properties, lighting or the general brightness
(Nixon and Aguado, 2013).

2.6 Representational Properties

Representation learning can be seen as a function φ that maps input data x to a
representation z, as shown in Eq. (2.28).

z = φ(x) (2.28)

Equivariance and invariance are two representational properties that state the effect
of spatial transformations t within x on z (Lenc and Vedaldi, 2014).

The representation mapping process is invariant to spatial transformations if
these do not affect the code representation (Lenc and Vedaldi, 2014). Formally, if
the mapping φ(t(x)) has the same result independent of the transformation T , then
φ is invariant to T , as shown in Eq. (2.29) (Shen, 2017).

φ(T (x)) = φ(x) (2.29)

For common ML tasks like classification, spatial transformations are irrelevant and
the ability to ignore them is desirable (Shen, 2017). For example, for the task of
detecting cats in images, it is only relevant if a cat is present and not for instance
where the cat is.

The representation mapping process is equivariant to spatial transformations if
the transformation is encoded in the representation (Lenc and Vedaldi, 2014). For
the formulation of equivariance, a transformation function T ′ is introduced that
captures how the transformation T would affect representation z (Lenc and Vedaldi,
2014). As shown in Eq. (2.30), the mapping φ is equivariant to the transformation
T if a transformation function T ′ exists and applying it on z has the same result
as applying the transformation T directly on x (Shen, 2017).

φ(T (x)) = T ′(φ(x)) (2.30)

For example, if it is known how the position of the cat in an image affects the
representation, then the position can be read from the representation.

If a function is invariant to a transformation the transformation information is
lost. If a function is equivariant to a transformation the transformation informa-
tion is present in the output. An invariant representation can therefore always be
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obtained from an equivariant representation but not vice versa (Kuzminykh et al.,
2018).

2.7 Adversarial Attacks

Since adversarial attacks are not the main focus of this work, they are only ex-
plained briefly to introduce important terms. Adversarial attacks are a technique
to find input images that trick a classifier but would not trick a human. These
misclassified input images are called adversarial examples (Szegedy et al., 2013).
Finding adversarial examples is done by applying small perturbations to correct
classified input images until they are misclassified. The goal of such an adversarial
attack can either be targeted at tricking the classifier into classifying a specific class
or untargeted, tricking the classifier into classifying any class except the correct one
(Yuan et al., 2017). These attacks need limitations to produce perturbations that
only affect the classifier but not a human (Yuan et al., 2017). In other words, the
perturbations should not change the input image so much so that it represents a
different class.

Adversarial examples highlight problematic decision boundaries (Moosavi-Dezfooli
et al., 2016), i.e. instabilities. Adversarial attacks can, therefore, be used to test
the robustness of ANN.
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Locally Embedded Autoencoder

While the hierarchical structure of discriminative objects first and foremost refers
to the semantic difference between those objects, they can also be differentiated by
their size. For subobjects to be within an object, they naturally have to be smaller
than their parent object. To achieve this local view of subobjects, AEs are applied
to local windows extracted by a windowing operation. Based on this spatial locality,
the operation presented in this work is referred to as locally embedded autoencoder
(LEA).

Since this work focuses on image data, the input is represented as a tensor [w, h, c]
where w is the width, h the height and c the channel dimension. However, the
described operation could be used on data of any dimensionality.

In Eq. (3.1), an AE is defined as a function ae for all values of an input window,
including all channels.

I[x, y, 0 . . . C] = ae(w) where w =

I[x− i, y − i] · · · I[x+ i, y − i]
...

. . .
...

I[x− i, y + i] · · · I[x+ i, y + i]

 (3.1)

In this formula, C refers to the code length within the AE. In a LEA every window
is encoded by one AE.

The convolutional layer, max-pooling layer, and the LEA, applied to a whole
image, have the same dimension reduction effect for the width and height dimen-
sion depending on stride and padding. Their behavior for the channel dimension
differs. Standard max-pooling with no stride on the channel dimension has the
same number of output channels as input channels. Convolution reduces all input
channels to one channel per kernel, resulting in the same number of output channels
as used kernels. The AE maps all channels to one code, with the code length being
a hyperparameter. The convolutional layer and the LEA are similar in that they
both allow the definition of the number of output channels, i.e. by defining the
number of kernels to use or by defining the code length.

The encoding process of windows via a LEA with the resulting output structure
is shown in Fig. 3.1. The output of a convolutional layer has a similar structure
with every channel representing the output for a kernel. The output image of a

19



Chapter 3 Locally Embedded Autoencoder

code mapsinput encoding

Figure 3.1: Encoding of windows via a LEA. Recombining all codes results in code maps
(in this example no-padding is applied).

kernel is called a feature map and visualizes the effect of this kernel on the whole
image. Therefore, combining the output of all kernels results in a set of all feature
maps. The channel dimension of the LEA output represents the results of one
code variable. The output image for a code variable is called a code map and
visualizes the information encoded by this code variable. All codes combined result
in a set of code maps. In other words, the LEA can be viewed as an unsupervised
convolutional layer.

Locally embedded instead of globally embedded AEs are used for two reasons —
computational efficiency and spatial locality.

The input data size has a substantial influence on the number of parameters in
a directly applied AE. With more free parameters the training time increases sig-
nificantly. Using the LEA restricts the number of parameters to the window size.
While windowing results in a set of windows and an AE is applied to every window,
only one AE is used. This makes the AE position-independent. Furthermore, this
vastly reduces the number of parameters and therefore the training time. Addi-
tionally, instead of training one AE on all windows in parallel with shared weights,
the windows are used in a batch fashion. The expected training input for a LEA
is of the dimensions [b, wi, hi, c] with batch size b, image width wi, image height hi
and the number of channels c. The training input for the single AE after the win-
dowing process is of dimension [b ·W,ww, hw, c] where W is the number of windows,
ww the window width and hw the window height. This results in an additional
efficiency improvement since the parallel training for every window only needs a
synchronization on the loss calculation and not on the backpropagation.
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3.1 Integrability

As shown in Fig. 3.2, it is possible to integrate a LEA into any ANN architecture.
This is due to considerations to multi-task learning and unrestricted inputs.

3.1.1 Multi-task Learning

The process of training an ANN that has LEAs can be thought of as multi-task
learning (MTL). The main task has an objective, for example getting good at classi-
fication. Every LEA has the objective of learning a local disentangled representation
and is considered as an additional task.

The optimization of multiple tasks can be done jointly or alternately. The joint
optimization of the two tasks is useful if both tasks are related (Baxter, 1995).
In a joint optimization, all parameters are adjusted based on both objectives or a
combined objective. It is important to point out that it can be difficult to balance
the weighting of the loss contributions in proportion to the combined loss. One loss
in a combined loss can dominate the other loss, such that the corresponding task of
the dominated loss is not learned effectively. In an alternate optimization, two sets
of parameters are adjusted based on their objectives. An alternate optimization of
dissimilar subtasks might be necessary if a joint optimization leads to a negative
transfer (Kang et al., 2011).

Solving the main task requires the LEA to at least preserve information relevant
to the main task. From the perspective of the optimization of the main task, the
representation created by the LEA is optimal if it is optimized specifically for the
main task. From this it follows that the LEA objective is neglected, the decoder
is ignored, and the encoder just adds additional free parameters to the model for
solving the main task. This does not mean that both objectives contradict, it only
illustrates that the LEA objective acts as a regularization technique for the main
task instead of a fully common objective. This property points out that a joint
optimization with a combined objective could be problematic. Firstly, while both
objectives might not contradict each other, they still can destabilize the training
process. The combined loss of the main task and the LEAs could have a rough
surface, therefore being hard to optimize. Secondly, the main task could dominate
the LEA objective, thereby violating the intention of this work. Additional weight-
ing hyperparameters and an elaborate tuning of these would be required. Both
issues make the evaluation of this operation difficult, could cause side effects and
therefore lead to wrong conclusions. Based on the effect of the main task on the
LEA objective, an alternate training for both objectives is used.

The objective of a LEA is specifically to encode local information. Allowing the
LEA optimization to adjust previous main task layers or the encoder of previous
LEA would break this local view. It is not clear how the local encoding objective
would effect previous layers. This could have a stabilization effect on the input
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Figure 3.2: A LEA between two artificial neural network layers

values of the LEA. Most definitely, it again introduces side effects to the training
of both tasks This is an additional reason for the use of an alternate training, also
between multiple LEAs.

The implementation of this work supports all training variants. In Fig. 3.2, a
LEA with encoder and decoder and the previous and subsequent layer of the main
task model are shown. The parameters of the entire model are split into multiple
subsets. Each LEA is a separate subset of parameters. All remaining parameters
of the entire model not in any LEA parameter subset is part of the main task
parameter subset. The loss of the main task is a scalar loss. In this work, the
main task is a classification objective and the loss is the log loss between the labels
and the softmax-normalized output of the main model. Every single LEA has a
separate loss defined by the AE. For all AE types used in this work, reconstruction
loss is averaged. To be exact, the mean of the sum of squared differences between
input window wi and reconstruction ri of all windows b ·W as shown in Eq. (3.2),

RL (w, r) =
1

l

l∑
i=1

#w∑
u=1

(ri,u − wi,u)2 where l = b ·W (3.2)

where b is the batch size and W the number of windows per input defines the total
reconstruction loss RL (w, r) of a LEA. The summation of squared differences is
done for the number of values within a window #w.

For every parameter subset, there is a respective loss. The joint optimization
with a combined objective is the optimization of all parameters with a weighted
sum of all losses. The joint optimization with independent objectives is an op-
timization of all parameters with independent optimization steps per loss. The
alternate optimization is an independent optimization of every parameter subset
with the respective loss. It is important to note that the optimization order for the
alternate optimization matters. While the optimization of LEA parameters is fully
independent of main model parameters during an optimization step, the optimiza-
tion of the main model parameters directly depends on the LEA parameters. This
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is due to the error of the main model parameters being backpropagated through the
encoder of the LEA. The parameter subsets, therefore, need to be updated sequen-
tially. Firstly, the main model parameters are updated. Secondly, the parameter
subsets of every LEA are updated in parallel.

To reiterate, the optimization of the main task and the LEA objective is an
MTL process. Based on their common objective, it makes sense to optimize them
jointly. Still, to avoid side effects and for an accurate evaluation of the LEA, they
are mainly optimized alternately.

3.1.2 Unrestricted Inputs

If an AE is directly applied to samples, the input value range is known and fixed.
However, for a LEA with a preceding ANN layer, this is not the case. During
training, the input value range is constantly shifting and the distribution is chang-
ing. For a LEA this entails the issue that the reconstruction value range is also
unknown and the issue of instability based on the constant adjustments. Since
dataset values are often normalized to a [0, 1] value range, for a simple AE the
reconstruction values are also expected to be within this range. This allows the
usage of certain techniques, like a logistic activation function for the reconstruction
output layer or the log loss as reconstruction loss. Having an unrestricted value
range, these techniques are not applicable. A direct approach to use the same or
similar techniques would be to restrict layers within the network. The restriction
to logistic activations would enable the usage of a log loss for the reconstruction
loss. The restriction to other activation functions would at least make the value
ranges bounded. On the upside, restricting the activations would make the analysis
easier and the training more stable. On the downside, a restriction on the activa-
tions is also a restriction on the expressiveness of the LEA. Therefore, no specific
restrictions on the layers of the main model are assumed. As a consequence, LEA
input values and reconstruction values are assumed to be unrestricted. To enable
such unrestricted reconstructions, the last decoding layer of all AE types used in
this work is a fully-connected layer with linear activation. As already specified in
Eq. (3.2), the reconstruction loss is the mean of the sum of squared differences
between input and reconstruction of all windows.

Another solution would be to use batch normalization on the LEA input but this
would also introduce additional side effects. Improvements that come seemingly
due to the LEA could be based on the inclusion of batch normalization. But,
this would make the independent analysis of the effects of this operation difficult.
Therefore, batch normalization is not used in this work.
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3.2 Autoencoder Interchangeability

Special attention was given to the modularity regarding the AE types used within
the LEA. The LEA is designed in a way that any AE type with predefined encoder
and decoder types can be used. This makes a flexible experimentation and analysis
phase possible. For a LEA, the AE model is provided as a parameter. Therefore,
the LEA implementation can be divided into two parts, an AE and a wrapper.

The wrapper prepares the input data for the AE and post-processes the codes.
In the preparation step, the layer input is split into windows which are flattened to
the batch level. In the post-processing step, batch samples and per-window codes
are reshaped to a batch of code maps.

The input of the AE is, therefore, a batch of windows. The only requirement
for the AE implementation is again that input values are unrestricted and need to
be handled accordingly. In this work, two encoder- and three decoder-types are
provided which can be set and combined via parameters. For both, the encoder
and the decoder, there exists a fully-connected and a convolutional variant. As a
decoder, additionally, the Spatial Broadcast variant is provided.

On a further technical note, only the code maps are returned for a LEA. This is
an implementation detail that allows to build up a network graph without handling
the AE loss. Instead, all AE losses are added to a global collection. Only at the
definition of the optimization, these losses are retrieved.

3.3 Autoencoder Types

For the LEA, the AE type is considered as elementary to obtain good codes. The
selection is, therefore, an important part of this work. Two properties are im-
portant for this selection, the encoding and disentanglement capabilities. For this
work, four different AE types were considered. These are the standard AE, the
k-sparse AE, the VAE, and the capacity-controlled VAE. From the two encoder
types and three decoder types, a selection of three combinations are evaluated.
These three are a combination of the fully-connected variants, a combination of a
convolutional encoder with a transposed convolutional decoder, and a combination
of a convolutional encoder with a Spatial Broadcast decoder. In this work, these
are abbreviated as fc, conv, and sb, respectively.

3.3.1 Encoder-decoder Combinations

The encoder and decoder layers are implemented generically. The layers automat-
ically adapt to the given input and do not need hyperparameter tuning regarding
the input size. In this work, all layers use a ReLU activation function and bias
neurons.
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3.3 Autoencoder Types

The fully-connected encoder has no additional hyperparameters. The encoder
takes the input window as a flat vector and processes it with a fully-connected
layer two a vector twice as big. The actual encoding is part of the AE specific part
and the encoder layer is a pre-encoding step. This is true for all encoder types.

The fully-connected decoder is similar to the reverse of the fully-connected en-
coder and also has no additional hyperparameters. The decoder takes the code
and again processes it with a fully-connected layer to a vector twice as big. As the
final decoding layer, a fully-connected layer with a linear activation function maps
onto a vector of the original window size. In all decoders, the final linear activation
function is necessary to shift the reconstruction values into the unrestricted value
range of the input window.

The convolutional encoder has a hyperparameter, the number of kernels K. The
usual convolution hyperparameters, kernel size, stride, and padding, are optional
and default to a kernel size of four, a stride of two, and the zero-padding. All
convolutional layers within this encoder use the same hyperparameters. The goal
of the convolutional layers is to reduce the input window size w in terms of width
and height to f < k where f is the output size and k is the kernel size. The number
of convolutional layers n needed for this reduction is calculated by Eq. (3.3).

n =

{
0 for k > w⌈
logs

(
w
k

)⌉
+ 1 else

(3.3)

The final size f in terms of width and height is calculated by Eq. (3.4).

f =

{
w for k > w⌈
w
sn

⌉
else

(3.4)

The output of the convolutional layers is processed as a flat vector with a fully-
connected layer to a vector of size K · f · f . If the kernel size is larger than the
supplied window, then no size reduction is performed and the convolutional encoder
reduces to a sort of a fully-connected encoder.

The transposed convolutional decoder is similar to the reverse of the convolutional
encoder and also has the number of kernels as hyperparameter and the same fixed
kernel size, stride, and padding. The decoder takes the code and processes it with
a fully-connected layer again to a vector of size K · f · f . The size in terms of width
and height is then increased to a similar size as the original input window. This
size increase is performed by n transposed convolutional layers, where n is again
calculated by Eq. (3.3). If sw /∈ S where sw is the original input window size and S =
2n|n ∈ N∗, then the resulting size of the increase will not match the window size.
Therefore, an additional fully-connected layer with a linear activation function maps
onto the correct window size. If the kernel size is larger than the supplied window,
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Chapter 3 Locally Embedded Autoencoder

then no size increase is performed and the transposed convolutional decoder reduces
to a kind of a fully-connected decoder.

The Spatial Broadcast decoder also has the number of kernels and an optional
kernel size that defaults to four as hyperparameters. The first step in the Spatial
Broadcast decoder is to tile the code to the original window input size as well as
adding the x and y coordinates, resulting in a size of [ww, hw, C+2], where ww is the
window width, hw is the window height and C is the code length. On these tiles, a
fixed set of two convolutional layers with a stride of one is used. To get the same
number of output channels as the input window has, an additional convolutional
layer with linear activation function, also a stride of one and as many kernels as
original input channels are used.

3.3.2 Core Encoding Logic

Besides a few AE type-specific hyperparameters, they all have the code length as
a hyperparameter. The actual core encoding logic is equal to the standard imple-
mentation of the respective AE types. To keep the implementation clean and the
analysis undistorted, no additional techniques are used. A major difference to the
standard implementations is the unrestricted reconstruction and the unrestricted
encoding.

The standard AE adds a fully-connected layer with linear activation function that
maps the encoder output onto the code length. The loss is only the reconstruction
loss as defined in Eq. (3.2).

In addition to the standard AE, the k-Sparse AE performs the top-k selection
on the code. The k-Sparse AE has the additional hyperparameters k and a as
described in Section 2.4.3.

The VAE adds a fully-connected layer with linear activation function that is sup-
posed to learn the mean and logarithmic standard deviation of the code’s isotropic
multivariate Gaussian distribution. The VAE provides the optional hyperparame-
ters beta and warm-up, which in experiments did not prove any significant advan-
tage and are therefore not used in the analysis part of this work. The loss is the
standard VAE objective as defined in Eq. (2.25), with the reconstruction loss as
defined in Eq. (3.2).

Instead of the standard VAE loss, the loss of the capacity-controlled VAE is equal
to the definition in Eq. (2.27). The loss definition of the capacity-controlled VAE
includes the additional hyperparameters γ and C for the weight and control value.
The capacity control is only applied during training, during the testing phase the
standard KL divergence regularization as defined in Eq. (2.24) is used. During
training, the control value C is linearly increased from zero to the defined maximal
control value. This increase is either done over the whole training period or as
warm-up until an earlier epoch defined via a hyperparameter.
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3.3 Autoencoder Types

Table 3.1: Comparison of the number of parameters of different AEs, different encoder-
decoder combinations and different input sizes. The parameter reduction rate base on
the smaller input size is shown. The standard AE and VAE show comparable results to
the k-sparse AE and capacity-controlled VAE, respectively. The target code length is 10
and the number of kernels is 32.

Autoencoder
type

Combination Parameters for
28×28×1 px

Parameters for
4×4×32 px

Parameter
reduction

Standard VAE sb 52 053 42 196 −18.94 %
Standard AE sb 51 723 41 866 −19.06 %
Standard VAE fc 2 509 604 1 081 876 −56.89 %
Standard AE fc 2 493 914 1 071 626 −57.03 %
Standard VAE conv 25 776 516 301 716 −98.83 %
Standard AE conv 25 776 186 301 386 −98.83 %

3.3.3 Comparison and Test

In Table 3.1, these different variants are compared in terms of their parameter
count. Since the k-sparse AE has the same number of parameters as the standard
AE and the capacity-controlled VAE has the same number as the VAE, they are
omitted from the comparison. As can be seen in the comparison, the AE types only
make up a small difference to the number of parameters. The parameter count of all
combinations primarily depends on the decoder variant. The number of transposed
convolutional layers and the number of neurons in the fully-connected decoder
is proportional to the input size. As a consequence, the number of parameters
increases proportionally as well. Since the Spatial Broadcast decoder has a fixed
number of parameters, the input size only affects the convolutional encoder of
the sb combination. In conclusion, the Spatial Broadcast variant has the fewest
parameter.

The number of parameters in this comparison does not directly correlate with
the actual training time. Training time also depends on the techniques used within
these variants. This is especially apparent for the Spatial Broadcast decoder. The
three convolutional layers of the Spatial Broadcast decoder all work on the whole
input image size with unit stride. The comparison between parameter count and
training time can be seen in Table 3.2. While the Spatial Broadcast decoder has the
lowest parameter count, the training time per parameter is much larger compared
to the other decoder types. For the stated configurations, these decoder types take
equally long to train.

Since the difference in parameter count between the AE types is minimal, they
are fairly comparable per encoder-decoder combination in terms of their per epoch
performance. The encoder-decoder combinations are comparable in terms of their
training time but their different parameter count suggests a greater capacity. This
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Table 3.2: Comparison between the number of parameters and the median time of train-
ing 800 epochs with different AEs and different encoder-decoder combinations. The stan-
dard AE and VAE show comparable results to the k-sparse AE and capacity-controlled
VAE, respectively. The target code length is 10, the number of kernels is 32, and the
input image size is 28×28×1 px. The system used for the time measurements is described
in Section 4.9.

Autoencoder
type

Combination Number of
parameters

Training time Time per
parameter

Standard VAE conv 25 776 516 2 h 31 min 0.35 ms
Standard AE conv 25 776 186 2 h 33 min 0.36 ms
Standard AE fc 2 493 914 2 h 05 min 3.00 ms
Standard VAE fc 2 509 604 2 h 06 min 3.01 ms
Standard AE sb 51 723 1 h 52 min 129.92 ms
Standard VAE sb 52 053 1 h 54 min 131.40 ms

could lead to better encoding and decoding capabilities or to overfitting. Neither
the encoder, the decoder, nor the AE was fine-tuned in terms of architecture or op-
timization hyperparameters. No enhancement with proven techniques is done. A
comparison therefore only reflects the implementation as used in this work without
any comparability to the state-of-the-art. Hyperparameters and other configura-
tions not mentioned for figures are listed in Appendix A.1.

The AE implementations of this work are central to the LEA analysis. To ensure
that the implementations are correct, they are tested directly as simple AEs on
the Fashion-MNIST dataset, i.e. without any windowing. For a sanity check,
the AE implementations are tested on their reconstruction capability. As can be
seen in Fig. 3.3, all implementations successfully reconstruct the given images of
the Fashion-MNIST dataset. In general, the standard AE based implementations
produce more accurate reconstructions but introduce artifacts. In some cases, the
k-sparse AE has issues to produce good reconstructions, as can be seen in Fig. 3.3
for the pullover and top reconstructions of the k-sparse AE with convolutional
encoder and decoder. The VAE based implementations generally produce more
blurry reconstructions. In some cases, the VAE loses fine details as can be seen in
Fig. 3.3 for the ankle boot and bag reconstructions.

For a comparison of the reconstruction performance, all four AE types with
fully-connected encoder and decoder are compared in Fig. 3.4 based on their re-
construction loss. While the AE loss includes different calculations and factors
per AE type, the reconstruction loss calculation is the same for all types. It only
captures the mean of the squared difference between inputs and reconstructions.
As already shown in Fig. 3.3, the reconstruction loss confirms that the AE imple-
mentations are correct. The k-sparse AE performs worse than the similar standard
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(a) (e)(c) (g) (j)(b) (f) (i)(d) (h) (k)

Figure 3.3: Fashion-MNIST reconstruction images with (a) being the ground truth
image. The other images show the reconstructions of the following AEs : (b) Standard
AE - fc, (c) Standard AE - conv, (d) k-Sparse AE - fc, (e) k-Sparse AE - conv, (f) VAE
- fc, (g) VAE - conv, (h) VAE - sb, (i) Capacity VAE - fc, (j) Capacity VAE - conv, (k)
Capacity VAE - sb
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Figure 3.4: Plot of the reconstruction loss on the Fashion-MNIST dataset for the used
AE types with fully-connected encoder and decoder.

AE implementation. Especially the high deviations between multiple runs of the
k-sparse AE suggest an instability. The comparison between the standard VAE
and the capacity-controlled VAE shows major differences. Until epoch 110 the ca-
pacity control is too restrictive and as a consequence, the reconstruction loss seems
to plateau. After the capacity control value reached 110, the reconstruction loss
improves again, even surpassing the standard VAE implementation. This suggests
that the capacity control not only has a positive effect on the disentanglement but
also on the reconstruction performance.

In addition to the AE type, the encoder-decoder combination is compared in
Fig. 3.5 in terms of reconstruction loss. While the VAE with the conv encoder-
decoder combination reaches the lowest test loss, it starts overfitting after epoch
400. This confirms the expectation that more parameters lead to overfitting. The
Spatial Broadcast decoder is the worst performing encoder-decoder combination
with the most deviation.

This section showed that all AE implementations work correctly. Their per-
formance varies but most of them perform sufficiently. For the usage within the
LEA, the k-sparse AE’s high deviation is of concern. The conv encoder-decoder
combination did show overfitting and for small input data reduces to a kind of
fully-connected combination. The simple fc encoder-decoder combination is there-
fore mainly used for the further LEA analysis.
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Figure 3.5: Plot of the reconstruction loss on the Fashion-MNIST dataset for the used
encoder-decoder combinations with a standard VAE.
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Chapter 4

Method

This chapter introduces the methods with which the quality of the experiments,
the analysis, and the results presented in this work is ensured.

4.1 Results Reliability

This work uses various metrics to evaluate and validate all experiments and results.
For all datasets used in this work, a split as defined in Section 4.8 into training and
test is applied. All metrics are evaluated on the training and test data after every
epoch. Metrics are recorded as an average of all batch results. For the training
data, this is done during training and not as an additional step. The metric results
for the training phase, therefore, incorporate results from the start of this phase.
Based on this evaluation detail, the training results can look slightly worse than
the testing results.

The majority of reported results in this work are based on 10 independent runs.
Result plots in this work that display metrics show per epoch the median of all
10 metric results. Besides, the deviations of all runs are displayed as background
hue. This gives a clear image of the median performance, the repeatability of these
results, and the stability of the models. If not stated explicitly otherwise, this
applies to all results shown in this work.

While images are taken from single runs, they are representative of results achieved
by the used hyperparameters, respectively. If not specified otherwise, images are
based on the test set. Most images presented in this work have been scaled up due
to their low resolution.

4.2 Reconstruction Metrics

For an AE the reconstruction performance is most important. If the reconstruction
process does not work, there is no guarantee that the encoding process works. Vice
versa, if the reconstruction is possible, the code needs to contain the necessary
information and hence the encoding process is successful. The same is true for the
LEA and its window reconstructions. Since a LEA only forwards the code maps to
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subsequent layers, it is of utmost importance that the code contains the necessary
information. This work assumes this requirement to be fulfilled if the reconstruction
is successful. Therefore it is important to measure and monitor the reconstruction
performance with different metrics.

The reconstruction loss is monitored per LEA in a network. It is important to
note that the reconstruction loss only refers to the squared distances between inputs
and reconstructions. While the AE loss of different types is not comparable, the
reconstruction loss is. Since the LEA can be used after any layer of the network, the
input values depend on the previous layers. The input values are therefore unknown
and can constantly shift. This behavior leads to a misleading reconstruction loss.
The observed phenomenon is that a change in the input value range directly affects
the reconstruction loss. For example, when the input values increase, the distance
also increases. This is the case, even when the relative distance between both values
stays the same. Therefore, the reconstruction loss can appear to be increasing while
relative to the input value range the reconstruction loss is decreasing. To counter
this misleading effect, a normalization of the reconstruction loss is introduced. The
main idea of this normalization is to scale the reconstruction loss i.e. the difference
between input and reconstruction by the maximum-to-minimum differences of input
values. This reconstruction loss normalization is defined in Eq. (4.1) as RLN(w, r).

RLN(w, r) =
1

l ·#w
l∑

i=1

#w∑
u=1

( |ri,u − wi,u|
|min(w)−max(w)|

)2

where l = b ·W (4.1)

The maximum-to-minimum differences in window values are defined as |min(w)−
max(w)|. Compared to the reconstruction loss defined in Eq. (3.2), the mean of
all values is calculated. The normalized reconstruction loss is only used for the
validation and not directly for the optimization.

The effect outlined above can be seen in Fig. 4.1, where the raw reconstruction
loss is plotted in blue and the normalization in orange. While the reconstruction loss
seemingly increases, the normalization decreases and thereby shows a correct rep-
resentation of the training progress. Tests performed during this work are therefore
only compared in terms of their normalized reconstruction loss. The normalization
also avoids reconstruction loss discrepancies based on the window size.

While the normalized reconstruction loss helps to visualize the training progress
regarding reconstruction and to compare multiple runs with different setups, it does
not directly give insights into the reconstruction quality. Therefore, the reconstruc-
tions are visually compared against the true input image. This comparison can be
done on a per-window basis or for the whole input image.

For larger windows, the per-window comparison clearly shows exact differences
in the reconstruction compared to the input image. Since for smaller images, the
details are too fine and visually not easily validatable, the per window comparison is
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Figure 4.1: Comparison of raw and based on input value range normalized reconstruction
loss on the dSprites dataset. A LEA (VAE - fc) following a convolutional layer.

not as useful. It is used as an additional help when inspecting unexpected behaviors.
More useful is the recombination of all reconstruction windows to a whole im-

age. This allows a comparison between the whole original input and the whole
reconstruction and is, therefore, easier to validate. The recombination of windows
is done by performing an inverse of the windowing function.

The reconstruction value distribution usually differs from the input value distri-
bution. To link reconstructions to their true values and to track them over the
training course, they are combined to one image. For the combination both images
have to be in the same value range or else the color space of the images shifts.
Hence, outliers in the reconstruction lead to grayish comparison images which are
again not easily validatable. This is solved by simply clipping the reconstruction
value range to the minimum and maximum of the input values. Thereby outliers
are ignored and the comparison images are visualized in a proper color range, i.e.
black to white for every channel. These clipped reconstructions are also only used
for the validation and not for the optimization. Since the clipping ignores the value
distribution, it is helpful to also compare the value distributions of the reconstruc-
tion and the input. For this reason, the histograms of both, the reconstruction
values and the input values, are visually compared over the course of training.
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Figure 4.2: Median of classification accuracy (blue) and loss (orange) of the shape
classification on the dSprites dataset

4.3 Classification Metrics

The network incorporating LEAs has to optimize two tasks — the encoding-decoding
task and the main task. The main task only and directly makes use of the code.
The classification metrics, therefore, verify that the code contains the necessary in-
formation for the main task. These metrics are also used to compare different LEA
configurations with each other or against a LEA free baseline. This comparison
focuses on the generalization performance.

The generalization performance of the classification is measured by the accuracy
and the log loss. As shown in Fig. 4.2, an increasing and generally higher accuracy
as well as a decreasing and generally lower loss indicates a better performance. The
log loss was introduced and defined in Eq. (2.21). The accuracy metric measures
the fraction of correct classifications and in this work is defined as in Eq. (4.2).

ACC (x, y) =
1

N

N∑
i=1

{
1 if arg maxu (ti,u) = arg maxu (xy,u)

0 else
(4.2)

This formulation assumes a one-hot encoding of the target samples t, i.e. every
class is a separate value with values of {0, 1}. Correct classification is given if the
highest value yi,u in the output yi marks the correct class, that is, the highest value
of y and t are at the same index u.

Both the loss and the accuracy, are monitored in combination to detect overfit-
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ting issues. Overfitting can be caused by the model complexity, a class-imbalance,
overconfidence, and false correlations in the training data (Poole and Mackworth,
2017). This work follows the standard procedure to detect overfitting by validating
the performance on a separate test set of unseen data. One type of overfitting,
overconfidence, is an issue that is present with models tested as part of this work.
On the one hand, a stable accuracy with an improving loss is a sign for a positive
increase in confidence. On the other hand, a stable accuracy with an increasing loss
is a sign for a negative confidence effect, namely overconfidence. This can be due
to a view wrong predictions that have little effect on the accuracy but an unpro-
portionate huge effect on the loss. In the case that for results of this work only the
accuracy is shown, the loss and accuracy show the same behavior and do not show
any other effects. The accuracy is more useful to judge the general performance
since it is always between [0, 1].

Using the classification metrics for the hyperparameter selection leads to a pitfall.
Selecting configurations that perform well for the classification objective seems to
introduce a bias of selecting models with a worse reconstruction performance. This
is not generally true, therefore it is important to always validate the classification
and reconstruction metrics.

4.4 Reconstruction Confidence Map

The LEA performs a per-window encoding and reconstruction. The reconstruction
loss can be defined per pixel, per window, or per batch. Compared to the per batch
reconstruction loss as shown in Eq. (3.2), the only difference to the per window
reconstruction loss as shown in Eq. (4.3) is that the reconstruction loss is only
calculated for every window, indexed by the parameter i.

RL (w, r, i) =

#w∑
u=1

(ri,u − wi,u)2 (4.3)

With respect to all reconstruction losses of all batches, the performance of a window
reconstruction can be formulated as confidence in the reconstruction of this window.
The confidence is defined in Eq. (4.4) as the inverse of the min-max normalized
reconstruction loss of the corresponding window.

CONFI (w, r, i) = 1− RL (w, r, i)

maxu (RL (w, r, u))
(4.4)

The minimum for the min-max normalization is set to zero.
Similar to the recombination of per-window codes to code maps, it is also possible

to recombine the per-window reconstruction confidences to a confidence map. This
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visualization highlights the reconstruction performance of the underlying AE on
parts of the input image. This is a good indicator of potential encoding-decoding
issues as well as for easy and challenging encoding-decoding regions in the input
data. Monitoring this visualization over the training course gives insights into the
learning progress and evolution of the AE. The evolution of the reconstruction
confidence map over multiple epochs is shown in Fig. 4.3.

4.5 Code Maps

As laid out in Chapter 3, code maps are the output of a LEA. More specifically,
code maps are the recombination of codes that resulted from a windowing and per-
window encoding process. The code maps can be viewed as a new output image,
where the channel dimension references the code maps. A channel, therefore, refers
to a code of the encoder or rather a grayscale image visualizing this single code for
all windows per input image. An example of the visualization of these code maps
is shown in Fig. 4.4.

Visualizing these code maps gives insights into the encoding process or more
specifically what single code variables encode. To be precise, these code maps give
insights into the state of entanglement and disentanglement of the code, respec-
tively. Highly entangled codes will result in noisy code map images without any
obvious human interpretable correlations. Thus the code maps are only intended
for the observation of disentanglement.

Important to note is that using the code maps for the hyperparameter selection
leads to a bias towards visually pleasing code maps. This might not only result in
worse classification and reconstruction performance but might also hinder a better
encoding or even better disentanglement. These code maps should therefore only
be used to gain insights and not as a direct performance metric.

4.6 Robustness Metrics

The robustness of the models is measured with and against adversarial attacks
quantified by perturbation distance and the success rate. To compare the per-
formance for a diverse set of adversarial attacks the Python package Foolbox1 is
used. Foolbox (Rauber et al., 2017) is a toolkit that provides implementations
of gradient-based, score-based, and decision-based adversarial attacks. A subset
of these attacks is used to evaluate the robustness of the models. This subset is
selected to test a diverse set of attacks with low runtime.

From the gradient-based attacks the Gradient Sign (Goodfellow et al., 2014), the
Projected Gradient Descent (Madry et al., 2017), the Deep Fool (Moosavi-Dezfooli

1Bethge Lab, Foolbox Python package: github.com/bethgelab/foolbox (used version: 1.8.0)
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1 epochs 100
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sample reconstruction confidence map

Figure 4.3: Reconstruction confidence map over the course of 100 epochs. White shows
areas where the autoencoder is confident and black shows the unconfident areas. Samples
are from (a, b) CIFAR-10 trained with a capacity VAE - fc, (c, d) Fashion-MNIST trained
with a standard AE - fc, and (e, f) MNIST trained with a capacity VAE - fc

1 2 3 4 5

Figure 4.4: Code maps of the first LEA in a CNN trained on the dSprites dataset with
a window of 4×4 px and 5 codes. Since every code shows a different and meaningful
pattern, a high degree of disentanglement can be assumed.
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et al., 2015), the ADef (Alaifari et al., 2018), the SLSQP, and the Saliency Map
(Papernot et al., 2016) attacks are selected. For example, the Projected Gradient
Descent attack searches for a minimal perturbation by computing the gradient for
the model making a misclassification while restricting the maximum perturbation
distance.

From the score-based attacks, the Single Pixel (Narodytska and Kasiviswanathan,
2016) and the Local Search (Narodytska and Kasiviswanathan, 2016) attacks are
selected. The Single Pixel attack switches single pixels to either black or white
until an adversarial example is found. The Local Search attack first searches for
the pixel with the highest influence on the classification, then modifies this pixel
and repeats this process until an adversarial example is found.

From the decision-based attack the Spatial (Engstrom et al., 2017), the Gaus-
sian Blur, the Contrast Reduction, the Additive Gaussian Noise, and the Salt and
Pepper Noise attacks are selected. The Spatial attack performs translations and
rotations until an adversarial example is found. The Gaussian Blur attack in-
creases the blur until an adversarial example is found. The Contrast Reduction
attack reduces the contrast until an adversarial is found. The other attacks work
accordingly.

For all attacks, the default implementation parameters are used. The attacks
are untargeted with the goal of misclassification, i.e. all attacks try to find an
adversarial example that leads to a classification that does not match the label.
Correct classification is defined by the accuracy metric as shown in Eq. (4.2).

The perturbation distance is measured in terms of the MSE, between input and
the successful adversarial example. To ensure independents to the input value
scale, both inputs are min-max normalized to [0, 1] (Rauber et al., 2017). Only
considering successful perturbations for the mean distance, makes it independent
to the success rate.

The success rate measures the fraction of successful perturbations. A pertur-
bation for a sample is successful if an adversarial attack could find an adversarial
example that led to a misclassification of this sample.

The robustness of multiple models against multiple adversarial attacks is visu-
alized with a heatmap. The columns of this heatmap contain the attacks and the
rows the models. This visualization compares baselines against models with LEAs
as well as different hyperparameter configurations with respect to their robustness
per attack. Both, the perturbation distance and the success rate are shown in the
same heatmap. For example, such a heatmap is shown in Fig. 4.5. Darker colors
visualize a higher perturbation distance, meaning that stronger modifications were
necessary to find an adversarial example. Smaller circles visualize a lower success
rate, meaning that the attack did not find an adversarial example more frequently.
Therefore, smaller circles and darker colors show higher robustness against the
respective attack. Different attack results for one model are not comparable with
respect to the model. A comparison between these results only informs about attack
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Figure 4.5: The heatmap of the perturbation distance and success rate comparison for
all models and all attacks is similar to this example that only contains the Classic baseline
evaluated on the dSprites dataset. Smaller and darker circles are better.
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differences but not how the model performs in comparison to different attacks. This
information comes only from the comparison between multiple evaluated models
and especially the baseline.

When colorizing based on the perturbation distance, the difference between rows
is not visible since single attacks that inherently result in a higher perturbation
distance overshadow the other attacks. This effect is noticeable in Fig. 4.5 for the
SLSQP attack. As a consequence, heatmaps shown in this work are standardized
using the respective baseline. Meaning, per attack the perturbation distance and
success rate is normalized using the standardization as defined in Eq. (2.14) with
the respective baseline value as mean µ. The standard deviation σ in the stan-
dardization also uses the baseline value as mean. As a result, the baseline marks
the center with zero. For the success rate comparison, negative values (i.e. smaller
circles) indicate better robustness. For the perturbation distance comparison, a
color space from red to gray and from gray to blue is used. Better robustness in
terms of perturbation distance is marked by positive values (i.e. blue colors) and
vice versa.

Running these attacks can take a considerable amount of time. For the selected
attacks this varies on average from 86 ms for the ADef attack to 7 s for the SLSQP
attack. The robustness on all attacks is therefore only evaluated on 400 samples
from the test set. More precisely, the first 20 samples of the 20 first batches are
used for this evaluation. The samples and batches are always in the same order for
the evaluation runs of every model.

4.7 Baselines

Two types of performance comparisons are performed in this work. The first being
comparisons between hyperparameter configurations of models using LEAs. The
second being comparisons between models with LEAs and models without LEAs.
Models which do not contain a LEA are referred to as baselines.

For separate analyses, three different baselines are used. In general, these base-
lines are used to analyze the effect and potential advantages of using a LEA. One
of those three baselines is called Classic, one is called CNN-POOL and one is called
Decoder-free.

The Classic baseline represents a simple classical CNN architecture with convo-
lutional (conv), pooling (pool), and fully-connected (fc) layers. Specifically, this
model consists of five layers with the sequence conv -pool -conv -pool -fc-fc. The con-
volutional layers perform a stride of one and the pooling layers a stride of two. The
pooling layers have a window size of two, equal to their stride. The first convolu-
tional layer has a window size of five and the second convolutional layer a window
size of three. This model works well on commonly used image datasets but does
not represent state-of-the-art. For a comparison, it is possible to replace pooling
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layers by LEAs. The Classic baseline with LEAs replacing pooling operations is
called CNN-LEA. In the CNN-LEA model, alternate training is performed. This is
why the convolutional layers have a stride of one and the pooling or LEA performs
the actual striding. This comparison should show the effect of applying the LEA
in a classical CNN architecture on the classification performance.

The POOL-FC baseline uses only one pooling layer and fully-connected layers,
i.e. the layer sequence pool -fc-fc. The main focus lays on the single pooling layer.
Only one pooling layer is used to allow testing with larger strides. The effect of
specifically replacing pooling with LEAs on the classification performance while
using the same hyperparameters is analyzed using this baseline. The POOL-FC
baseline with LEAs as pooling replacements is called LEA-FC. In the LEA-FC
model also an alternate training is performed.

The LEA-only model is mainly a LEA only architecture, with a layer of LEAs and
therefore a lea-fc-fc layer sequence. Training in this setup is generally performed as
a joint training of the main objective and the reconstruction objective instead of an
alternate training. The Decoder-free baseline uses the LEA-only architecture but
only with respect to the main objective. The reconstruction objective is ignored
and the decoder path of the architecture is never used. Comparing the Decoder-free
baseline against the LEA-only model should reveal the effects of the reconstruction
objective, i.e. the regularization of the LEA output.

The final fully-connected layers in all of these models are the same. The first
fully-connected layer uses 1024 neurons and the second fully-connected layer maps
these onto the output target. It is important to note that none of the above models
compares against state-of-the-art results. They are meant to analyze effects and
not to show new performance achievements.

4.8 Datasets and Data Preprocessing

Experiments and analysis were performed using four image datasets — MNIST,
Fashion-MNIST, dSprites, and CIFAR-10. The MNIST dataset (Lecun et al., 1998)
contains grayscale images of ten handwritten digits. These are single digits in the
range of [0, 9]. The Fashion-MNIST dataset (Xiao et al., 2017) contains grayscale
images of ten fashion articles. These fashion articles are T-shirts / tops, trousers,
pullovers, dresses, coats, sandals, shirts, sneakers, bags, and ankle boots. The
dSprites dataset (Matthey et al., 2017) contains black and white images of three
shapes with four known spatial transformations. The shape is either a square,
an ellipse, or a heart and images vary in the scale, orientation, and position of
these shapes. The CIFAR-10 dataset (Krizhevsky, 2009) contains colored images
of four vehicles types and six animals. The four vehicles are airplanes, automobiles,
ships, and trucks and the six animals are birds, cats, deers, dogs, frogs, and horses.
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Fashion-MNISTMNIST dSprites CIFAR-10

Figure 4.6: Example images of the used datasets — MNIST, Fashion-MNIST, dSprites,
and CIFAR-10

The datasets, MNIST2, Fashion-MNIST3, dSprites4, and CIFAR-105, are available
online. A set of four example images per dataset is shown in Fig. 4.6.

For the data pipeline implemented in this work, all dataset features and labels
need to have the same format. Features, i.e. the input images, need to have a value
range of [0, 1] and a channel last data format. Labels, i.e. the target output classes,
need to be one-hot encoded, where every class is a separate value with values of
{0, 1}. Since this is not necessarily the case, the data pipeline incorporates some
preprocessing steps. The image might come in an 8-bit integer format with values
in the range of [0, 255]. In this case, the images are scaled to the desired values
range with a min-max normalization, i.e. a division by 255. For images with a
channel first format, the channel dimension is swapped to achieve a channel last
format. On all dataset labels, a one-hot encoding is performed. Before training, all
training samples are shuffled to ensure a stochastic training process. This shuffling
and all other random processes used during the data preprocessing are initialized
with a fixed seed to ensure comparability by repeatability.

While all other datasets come with a predefined test set, the dSprites dataset only
comes with 737 280 labeled images. These images come from all permutations of
three shapes, six scales, 40 orientations, 32 x-positions, and 32 y-positions. To have
similar training and testing set sizes as given by MNIST and Fashion-MNIST as
shown in Table 4.1, about 70 000 samples are selected randomly from the dSprites
dataset and randomly split into a training set with a fraction of about 85.8 %. As
shown in Table 4.1, this random process with fixed seeds results in a subset of
69 978 samples, which is about 9.49 % of the whole dataset, with 59 972 training
and 10 006 testing samples. The dataset size approximately reduces from 18.87 MB
to around 1.79 MB.

The main advantage of the MNIST, Fashion-MNIST, and CIFAR-10 is the fast

2MNIST dataset obtained from: yann.lecun.com/exdb/mnist/
3Fashion-MNIST dataset obtained from: github.com/zalandoresearch/fashion-mnist
4dSprites dataset obtained from: github.com/deepmind/dsprites-dataset
5CIFAR-10 dataset obtained from: cs.toronto.edu/˜kriz/cifar.html
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4.9 Environment

Table 4.1: Comparisons in terms of image size, sample count and file size of the used
datasets — MNIST, Fashion-MNIST, dSprites, and CIFAR-10

Dataset Image size Training
samples

Testing
samples

Total
samples

File size

MNIST 28×28×1 px 60 000 10 000 70 000 11.29 MB
Fashion-MNIST 28×28×1 px 60 000 10 000 70 000 30.12 MB
dSprites 64×64×1 px 59 972 10 006 69 978 ∼1.79 MB
CIFAR-10 32×32×3 px 50 000 10 000 60 000 181.85 MB

runtime for experiments. MNIST and Fashion-MNIST are equal in terms of their
dataset structure and sample format. Fashion-MNIST has a higher classification
complexity and is, therefore, more meaningful for experiments (Xiao et al., 2017).
The images of the MNIST, Fashion-MNIST, and dSprites datasets show simple
structures. As a consequence, models trained on these datasets are more inter-
pretable. Since the generative factors of the dSprites dataset are known, it is used
to analyze disentanglement effects.

Based on the fast runtime, the easy interpretability, and the existing task com-
plexity, Fashion-MNIST is used for most experiments during this work. For all ex-
periments related to the disentanglement property, the dSprites dataset was used.
MNIST and CIFAR-10 were used for additional validations. Results shown in this
work, are from any of these four datasets. For every graphic presented in this work
the used dataset is specified in the respective caption.

4.9 Environment

The implementation accompanying this work was implemented with the Python6

programming language and the ML framework TensorFlow7. The models were
trained on the computer cluster of the Training Center for Machine Learning project
of the University of Tübingen funded by the Federal Ministry of Education and
Research. The cluster provides 40 compute nodes where each is equipped with
a 2 TB solid-state drive, 256 GB random-access memory (RAM), an Intel XEON
E5-2650 v4 central processing unit (CPU), and four Nvidia GeForce GTX 1080 Ti
graphics processing units (GPUs). Each training run was configured to use one node
with four CPU threads, 6 GB RAM per thread and one of the four GPUs. During
training these resources were reserved, therefore there should be no interference
from other tasks on the same node.

6Python Software Foundation, Python programming language: python.org (used version: 3.6.5)
7Google LLC, TensorFlow framework: tensorflow.org (used version: 1.3.1)
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Chapter 5

Analysis

This chapter focuses on the analysis of different aspects, experiments, and theories
regarding the LEA.

5.1 Unsupervised Learning of Local Features

Classical ANN approaches to object recognition are often most concerned with
shape and texture of objects to achieve classification. The human visual processing
can be described in stage, where the earliest stages detect basic features like edges,
contrasts, and orientations and later stages group these features into higher-order
objects with depth information and separations between object and background
(Ward, 2015). Since we can view our world in a hierarchical structure of always
finer subobjects and a whole object only makes sense if the required subobjects are
present, it makes sense to discriminate subobjects and to discriminate higher-level
objects based on these. While current ANNs probably implicitly do something
similar, they do not explicitly combine subobjects over multiple stages. From the
perspective of image data this notion of subobjects clearly is defined by the window
size. The notion of grouping can be achieved by subsequent ANN layers. This forms
one of the core motivations behind the LEA.

Training ANNs via supervision, i.e. by providing class labels for the object
recognition task, is most common. This reveals the main issue for implementing an
approach with explicit detection and combination of subobjects — the subobjects
are unknown and therefore supervised training is impossible. With deep bag-of-
features models (BagNets) Brendel and Bethge (2019) presented an approach with a
similar kind of supervised training. The BagNets are trained to classify the target
labels on smaller windows, thereby learning class-specific features. These local
classifications are then recombined to a heatmap per class. This recombination
process is similar to the recombination of codes in the LEA. As a final step, the
sum over every heatmap yields a classification score for every class. In (Brendel
and Bethge, 2019) promising results for the application of this approach on the
ImageNet1 dataset (Russakovsky et al., 2015) are shown.

1ImageNet dataset can be obtained from: image-net.org
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In the BagNets approach, the explanatory factors are still unknown. An imagi-
nary dataset could contain class labels for every subobject of any degree of detail. It
is unfeasible to create such a dataset by manually labeling windows of varying size.
There might even be explanatory factors that even humans do not explicitly rec-
ognize. Therefore a learning process that automatically detects these explanatory
factors without supervision must be used — unsupervised learning.

In the LEA the process of encoding windows is supposed to represent the un-
supervised classification for explanatory factors. Important to note here is that
a standard AE does not explicitly learn any classification like code. To reiterate,
an AE needs to learn the features that most define the input data to fulfilling the
reconstruction objective. While it is reasonable to expect these features to corre-
late with the explanatory factors a human would recognize, these might be present
in an intangible way. In other words, for classification, an indicator per class is
expected, but all code variables might not have any kind of separation. Therefore
it is intangible for humans to understand and judge the classification capabilities
of a fully trained standard AE. The missing separation in the code is referred to as
the code being entangled.

In contrast, if the learned classes are separate, then the unsupervised learning is
successful if for humans it is easy to identify the distinct classes from the model
output, i.e. the code. In the LEA this means that the code maps show inter-
pretable and meaningful images. To achieve this, this work uses disentanglement
techniques. Even if this process works, it is not clear if ANNs benefit from these
human interpretable representations.

While the standard and k-sparse AE produce highly entangled code represen-
tations, VAE-based models show some form of disentanglement. Especially the
KL divergence regularization is important to obtain a disentangled code (Higgins
et al., 2017). The capacity-controlled VAE (Burgess et al., 2018) showed the most
promising results and is, therefore, the preferred VAE method. Another recent
technique that showed promising results is the Spatial Broadcast decoder (Wat-
ters et al., 2019). This decoder can be used in combination with any AE type.
To verify the disentanglement properties of these two techniques, they are directly
tested on the dSprites dataset. Important to note here that for this test only the
AE implementations are used without the LEA specifics. The dSprites dataset is
a generated dataset that has an important property for the test of disentangle-
ment — all generative factors are known. Namely, the generative factors are the
shape, the scale, the orientation, the x-position, and the y-position. It makes sense
that good codes for these images have to consist of these factors. Consequently,
it can be assumed that a perfectly disentangled code would map one factor onto
one code variable. Therefore, when using this AE for image generation, changing a
code variable should only change the respective factor in the generated image. For
this test, the capacity-controlled VAE was combined with the Spatial Broadcast
decoder and fully trained on the whole dSprites dataset. To independently modify
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Figure 5.1: Generated images resulting from single code changes while all other code
variables remain at zero. Only five of 10 code variables encode information and are shown
here. The shown images are the result of changing the respective codes in the ranges
[−3,+3] with 0.5 steps for the x and y position, [−2.1,+2.1] with 0.35 steps for the scale,
[−1.2,+1.2] with 0.2 steps for the first orientation / shape code, and [−1.1,+0.7] with
0.15 steps for the second. The autoencoder was trained on the dSprites dataset.

code variables a small user interface (UI) that regenerates images on code change
was implemented. This UI was used to modify codes for the fully trained AE of
this test. The resulting images of changing these codes in limited ranges around
zero are shown in Fig. 5.1. The training was performed with 10 codes but only five
learned to encode something. Changing the five other codes does not result in any
notable change in the generated image. Therefore only the result images for the
modification of the five codes that learned to encode something are shown. As can
be seen, this unsupervised training resulted in a well-disentangled code. Especially
the positions and scale factors are perfectly separated. The orientation and shape
are entangled over two codes.

These results prove that it is possible to discriminate explanatory factors by
learning disentangled and meaningful codes without supervision. Instead of doing
this on whole input images, the goal of this work is to learn disentangled codes of
windows. For this purpose, a test setup is prepared to investigate the disentangle-
ment of the LEA codes. A LEA is used directly on the raw dataset images with
only the local reconstruction objectives. This eliminates side effects of the convo-
lutional layers, the pooling layers or the classification objective. The windowing is
done for 4×4 px and as AE the capacity-controlled VAE with the fully-connected
encoder-decoder variant is used. The target code consists of 10 values. To get a
higher resolution, a stride of one was used. This setup is run on all four datasets,
i.e. CIFAR-10, dSprites, Fashion-MNIST, and MNIST. The resulting code maps
with the respective input image can be seen in Fig. 5.2. Note that for all four
datasets the reconstruction performance is good.

These code maps do not seem to show any resemblance to any obvious subclasses.
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input 42 6 91 5 83 7 10

Figure 5.2: On the right 10 code maps are shown, which are the result of a LEA directly
trained on the input images displayed in the first column. All four datasets were used
and per dataset two results are shown. From the top to the bottom these are CIFAR-10,
dSprites, Fashion-MNIST, and MNIST. Since the LEA window size was 4×4 px, mostly
edge related features are learned.
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The used datasets are of relatively low resolution and especially the dSprites,
Fashion-MNIST, and MNIST datasets do not particularly contain subclasses. The
chosen window size of 4×4 px only allows the AE to learn edge related codes. That
every code encodes properties for edges is especially visible in the Fashion-MNIST
and MNIST results. Only the CIFAR-10 results show more diverse code patterns.
While these results do not specifically show the unsupervised classification of sub-
classes, it is important to note that every code map shows a coherent pattern. Code
maps, therefore, seem to encode specific features or situations. Further testing on
these capabilities needs to be performed.

5.2 Equivariance to Spatial Transformations

Convolutional neural networks (CNNs) are known for their favorable properties in
regards to invariance, especially their invariance to translations. If a CNN or more
generally an ANN is trained on an objective that does not depend on spatial infor-
mation, the assumption can be made that this unnecessary information is lost over
the course of multiple layers. This loss in spatial information over multiple layers in
such a network is what this work refers to as invariance to spatial transformations.
In contrast, if an ANN would be specifically trained to preserve spatial information,
the assumption can be made that this information is still present in subsequent lay-
ers. The further existence of this spatial information is what this work refers to
as equivariance to spatial transformations. The reconstruction objective of an AE
can be viewed as an objective that specifically preserves spatial information. A
reconstruction is deemed successful if it is close to the original image and this is
only the case if all spatial properties of the reconstruction are close to the original
image as well. In this case, the code has to contain the spatial information and the
AE is equivariant to spatial transformations. Since this holds for an AE and all
codes are recombined without any value change, this also holds for a LEA.

This work proposes a method to test the preservation of spatial information, i.e.
the equivariance to spatial transformations. This method tests the degree of equiv-
ariance in terms of the loss in spatial information when performing the operation
under test. The loss in spatial information is called the spatial information loss. A
trained model is tested by measuring the spatial information loss on every network
layer. The more this loss decreases from layer to layer, the less this model or specific
layers are equivariant to spatial transformations. The test result can be directly
used to compare different models. To measure the spatial information loss, the
ground truth spatial transformations need to be known. Since the dSprites dataset
is mainly generated from spatial transformations, namely translation, rotation, and
scale, it is a good choice for this test.

The test setup as described above and as used in this work is shown in Fig. 5.3.
Images of the dSprites dataset are used as input x and the labels are used as
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Figure 5.3: Model to evaluate the preservation of spatial information per layer. Solid
lines show the pre-trained model (Classic / CNN-LEA). Dashed lines show the evalua-
tion of every layer. x is an input image from the dSprites dataset. y1,...,5 are the five
classification targets: shape, scale, orientation, x-position, and y-position

target output y, where y1 refers to the shape and y2,...,5 to the scale, orientation,
x-position, and y-position, respectively. To simulate an objective that does not
have evident dependents on the spatial transformations, the network under test is
fully trained with the objective to classify the shape of the sprites, i.e. if it is an
ellipse, a heart, or a square. The network under test has no information about
the spatial transformation labels. Every layer of the network under test, including
the input image, is connected to a fully-connected layer with 1024 neurons. Each
of these independent fully-connected layers uses a fully-connected layer with linear
activation function per spatial transformation label and a log loss between the
softmax-normalized output and label. In other words, every layer of the network
under test is connected to a respective spatial information classifier. Every spatial
classifier is trained until convergence while the network under test does not change
due to fixed weights. For the network under test, Fig. 5.3 shows the Classic baseline
compared to the CNN-LEA model.

The results of this test are shown in Fig. 5.4. These plots show the accuracy of
classifying the correct spatial transformation for all four transformations.

The first insight comes from the difference between the different transformation
types. While both translation transformations (i.e. change in x and y position)
show the same behavior, the other two transformations, scale and rotation, show
different behaviors. This indicates that the model handles different transformation
types, translation, scale, and rotation, differently while not differentiating between
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Figure 5.4: Accuracy of classifying the spatial transformations of the dSprites dataset,
namely scale, orientation, x-position, and y-position, for every layer of the model under
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transformations of the same type.
In general, an interesting insight from this evaluation is in regards to the last

fully-connected layer with linear activation function, i.e. the output layer. For
most transformations, layers, and models the spatial information is preserved by
some extend. Except for the output layer, for all transformations and models, the
output layer removes the spatial information. The expected output is the shape
classification. This final output seems to only contain information about the shape
and close to no information about transformations. This result contradicts the
original hypothesis for CNNs being invariant to spatial transformations, in that
the tested CNN did show equivariance to spatial transformations. Contrary to
the original believe that spatial information is lost with every layer, the spatial
information in most cases is preserved and potentially used throughout the network
until it is dropped in the final layer.

Only analyzing the other layers except the output layer gives insights into the
degree of equivariance to the three transformation types. Here the comparison
between both models, the Classic baseline and the CNN-LEA, is of interest. For
both models the presence of information regarding the translation is constant and
neither shows a significant increase nor a significant decrease, indicating that it is
simply preserved. This is explainable by looking at the windowing process used
in a convolutional layer, a pooling layer, and a LEA. The result for every window
will always end up in the same relative position. For both models, the information
regarding the scale is classified more accurately in subsequent layers. This is also
explainable by the windowing process but with respect to the data reduction in
that the scale in the input layer has a larger effect on subsequent layers. For the
orientation, the results on the test set show that a CNN like architecture loses
the orientation information over subsequent layers. This does not prove invariance
to rotation in CNN architectures but disproves the existence of equivariance to
rotation. Interestingly, the CNN-LEA model not only preserves the orientation
information but also generates better representations on subsequent layers. This
seems to be an advantage of the LEA over a classical CNN architecture.

The results show that CNN architectures are not only invariant but also equiv-
ariant to translation and scale transformations. While the Classic baseline and
CNN-LEA perform similar for changes in position and scale, the CNN-LEA has a
clear advantage for orientation changes.

5.3 Intelligent Pooling

Pooling and the LEA perform a size reduction of the input images on a per-window
basis. Pooling reduces every window per channel to a scalar value by a untrained
reduction operation, e.g. max-pooling reduces to the maximum value. LEA is a
trained operation that reduces every window, including all channels, to a vector
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with a length according to the code length. Given these similarities, it is of interest
how both methods directly compare. Since the LEA is a trained operation, it could
at least fall back and learn to do something similar to pooling. That would suggest
that a successfully trained LEA has the potential to be at least as good as pooling
on the reduction task. The encoding based on the reconstruction objective could
also show other advantages. This section, therefore, compares max-pooling with
the LEA, specifically the classification performance of the POOL-FC baseline, the
LEA-FC model with a VAE, and the LEA-FC model with a standard AE. Both
AEs in this comparison use the fully-connected encoder and decoder variants.

From a theoretical standpoint, a LEA with a standard AE and fully-connected
encoder should be able to learn and perform a max-pooling function. The univer-
sal approximation theorem states that an ANN can approximate any continuous
function for a closed and bounded subset of Rn if it consists of a layer with non-
linear activation functions and a subsequent layer with a linear activation function
(Cybenko, 1989; Goodfellow et al., 2017). Since the max function for two variables
can be written as a linear combination of continuous functions defined for positive
input values as shown in Eq. (5.1), the theorem applies.

max(x, y) =
1

2
(x+ y + |x− y|) (5.1)

This is more obvious when rewriting the formulation using the ReLU activation
function as shown in Eq. (5.2).

max(x, y) =
1

2
(φReLU (x+ y) + φReLU (x− y) + φReLU (y − x)) (5.2)

This formulation equals a fully-connected ANN with three neurons with ReLU
activation function and a subsequent neuron with a linear activation function. Since
the LEA with standard AE and fully-connected encoder in the test setup only has
positive inputs in the range [0, 1], a layer with ReLU activation function and a
subsequent layer with linear activation function, it should be able to learn and
perform a max-pooling function.

The test setup compares max-pooling against the LEA in terms of classification
performance for different window sizes. This classification model for POOL-FC
consists of the layer sequence pool -fc-fc and for LEA-FC of the layer sequence lea-
fc-fc. To reiterate, the LEA is only trained based on the reconstruction objective
and the fully-connected layers on the classification objective. Since the LEA in
this test setup is directly connected to the input data, the LEA output is fully
independent of the classification objective. The comparison is performed for the
window sizes 2, 4, 8, 16, 32, and 64 on the dSprites dataset that consists of images
with a size of 64×64×1 px. The stride is chosen in a way that no overlap or gap
between windows occurs, i.e. the stride size is equal to the window size. Every
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model and window size combination is fully trained 10 times over 100 epochs. This
comparison is done for AEs with a code length of one and with a code length of
10. Since max-pooling reduces every window per channel to a scalar value and the
input image has only one channel, the comparison against a LEA is only fair for
codes of length one.

The results of this test for both code lengths can be seen in Fig. 5.5. As expected,
a LEA with standard AE and fully-connected encoder performs at least as good
as max-pooling. This does not conclude that the LEA performs max-pooling, in
fact, the performance is consistently slightly better and therefore suggest that a
better operation is learned. Interestingly, for small window sizes, i.e. a window
size of 2×2 px, the restriction effect of the VAE seems to hurt the classification
performance. This is the case for both code lengths. Other than that, all methods
in the comparison with a code length of one perform relatively similar with the
LEA based models slightly outperforming the max-pooling based model. For a
code length of 10, the difference between max-pooling and the LEA is apparent.
While max-pooling loses important information with every window size increase,
the LEA mostly retains all information. The VAE based LEA even improves with
larger window sizes. This is probably due to the restriction effect, in that for larger
windows it is easier to find patterns that can be disentangled.

Since larger window sizes also denote larger stride sizes, these results indicate
the possibility to use larger strides with larger window sizes. As a consequence of
larger strides, a larger size reduction is achieved. This has the potential to reduce
the number of layers within an ANN.

5.4 Sample Complexity

Artificial neural networks (ANNs) need lots of training data to learn a good function
approximation. Improving the data efficiency, i.e. reducing the sample complexity,
is an important goal. The LEA has properties that might have positive effects on
the sample complexity. The AE is trained in a data-efficient way in that every
input image is split into many windows and therefore increase the training sample
size significantly. The fact that an AE learns to encode the input data, might be
favorable as well. The number of training samples of individual classes depends
on the number of occurrences within images instead of the number of images. For
the reconstruction objective or more precisely the encoding, the network learns
to focus on important features. On a local scale, this could help the network
to focus on important parts of the input data and therefore a reduced number of
necessary training samples. An additional factor could be the unsupervised learning
of subclasses. This would add training information that was not explicit before.
This adds features to the input data which could help to reduce the number of
needed training samples.
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Figure 5.5: Classification accuracy on the dSprites dataset for different window sizes
after 100 epochs training of three models for two code lengths of one and 10.
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For the test of sample complexity, four subsets of the dSprite dataset are used.
These four subsets consist of a selection of 10, 500, 5000, and 50 000 samples of the
training set. Before the selection, the training set is shuffled to ensure a random
distribution and therefore an even composition of target classes. No explicit mea-
sure is taken to ensure the class-balance. Since the dSprites dataset classification
has three target classes, the smallest set of 10 samples could still contain three sam-
ples per class. Reducing the number of training samples still comes along with the
risk of increasing the class-imbalance and therefore the risk for overconfidence. The
shown classification loss results for training show the performance on the reduced
training subset and for the test on the whole testing set.

The results of this test are shown in Fig. 5.6. Instead of the classification accu-
racy, the loss is displayed. This is due to the difference between both metrics in
this case. For 10 and 500 training samples the loss of the Classic baseline increases
while its accuracy remains constant. This is a clear indicator of overconfidence.
While the Classic baseline is affected by overconfidence, the LEA is not. This high-
lights a potential advantage of the LEA operation. Also, the difference between
training and testing results is way smaller. Hence, the LEA shows less overfitting
compared to the Classic baseline. Important to note here that the accuracy for 10
and 500 training samples shows a bad classification performance for both models,
only slightly above random guessing. The Classic baseline shows a faster conver-
gence with both models converging to similar results when training long enough.
Since in the LEA two objectives are optimized at the same time, this is an expected
result.

5.5 Robustness Against Adversarial Attacks

This section evaluates the robustness of the LEA against adversarial attacks. For
this evaluation, the CNN-LEA and Classic baseline models are trained for 100
epochs without significant overfitting on the dSprites dataset. These fully trained
models are tested against several gradient-, score- and decision-based adversarial
attacks. Since in most cases the result difference turned out to be very minor, as
can be seen in Fig. A.1, the results of the CNN-LEA models are normalized around
the results of the Classic baseline. These comparison results can be seen in Fig. 5.7.
Note that the results for the VAE based models with Spatial Broadcast decoder are
omitted since they failed to properly learn the classification objective. Including
these would result in a distorted comparison due to different extrema.

Many of the gradient-based attacks, ADef, Deep Fool, and SLSQP to be specific,
show a higher success rate than against the Classic baseline. At the same time, the
ADef and SLSQP attacks need a slightly higher perturbation distance compared
to the Classic baseline. These results still suggest that models incorporating LEAs
are more vulnerable to gradient-based attacks. In contrast to this observation, the
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dataset.
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success rate of the Projected Gradient Descent attack is slightly lower and for the
standard AE with Spatial Broadcast decoder the perturbation distance is slightly
higher. This could be due to the restricted nature of the Projected Gradient Descent
attack. Also, the robustness against the Saliency Map attack is slightly better in
terms of success rate and perturbation distance.

The robustness against score-based attacks shows the only major differences. Es-
pecially against the standard AE and capacity-controlled VAE models, the success
rate of the Single Pixel attack is significantly lower. An argument could be that
this is based on the dimensionality reduction nature of the encoding process but the
missing improvement for the VAE models contradicts this. It is also still an open
question why the VAE and the capacity-controlled VAE show different results.

The robustness against decision-based attacks completely depends on the specific
attack. Only the Gaussian Blur attack shows an improvement in terms of a higher
perturbation distance. The Salt and Pepper Noise attack is the only attack that
shows a lower success rate. Since the Spatial attack performs spatial transforma-
tions, it is of particular interest. The attack performs spatial transformations and
the dSprites dataset contains . Since the generative factors of the dSprites dataset
are spatial transformations, it would have been expected to see major improve-
ments against this type of attack for this dataset. While the success rate is overall
lower, it did not meet those expectations for the perturbation distance.

The differences between the results for different models seems to be more nu-
anced. This evaluation did not reveal a clear pattern or obvious advantages. Im-
portant to note is that the above observations are based on minor or even infinites-
imally small differences. Even though the results are averages of 10 different runs,
as a consequence of the normalization the differences could also be the result of low
fluctuations. However, as mentioned in the beginning, except for the score-based
attacks the results did not show any significant improvement or deterioration in
robustness against adversarial attacks.

5.6 Regularization Effect

The AE objective can also be seen as auxiliary regularization for the classification
objective. The Decoder-free baseline uses only the encoder-pathway and ignores the
decoder as well as the AE objective. Since the encoder-pathway is trained using
the classification objective, it is just a simple ANN. More specifically, if the fully-
connected encoder-decoder variant is used, the LEA only acts as a fully-connected
layer with connections based on the windowing configuration. The question is, how
adding the AE objective would affect the classification objective.

The test setup for this analysis uses the LEA-only model. This is a LEA plus
fully-connected layers trained jointly on the classification and AE objective. This
joint training is performed by defining a joint loss. The joint loss is simply a
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weighted combination of all losses. This combination is shown in Eq. (5.3),

Ljoint = τ · Lclass + λ ·
∑

Llea (5.3)

where Lclass is the classification loss, Llea is the loss of a LEA, and Ljoint is the
joint loss. If multiple LEAs are used, their joint loss is simply the sum without any
weighting. The scalar weights τ and λ weight the classification and total AE loss,
respectively. The weight λ of the total AE loss is referred to as LEA weight.

To adjust the balance between both losses, it suffices to adjust only one of both
weights. In this test setup, the classification weight τ is set to one, and only the
LEA weight λ is adjusted. If the LEA weight is set to zero, the AE loss does
not affect the training and therefore the LEA-only model reduces to the Decoder-
free baseline. This test is intended for to analysis of the effect of adding the AE
objective to the classification objective, i.e. adding the AE loss. By adjusting
the LEA weight, it is possible to observe the respective effect on classification
and reconstruction performance. In this test setup, the capacity-controlled VAE
with the fully-connected encoder-decoder variant is used. The test is performed on
the CIFAR-10 dataset with a window size of 8×8 px and a code length of 10. This
evaluation is done for a fixed set of LEA weights, namely the values 1× 102, 1× 101,
1, 1× 10−1, 1× 10−2, 1× 10−3, and 1× 10−4. For every weight configuration, 10
runs are fully trained over 200 epochs.

The results of this test are shown in Fig. 5.8. This plot compares the effect
of different LEA weights on classification and reconstruction loss. The reported
loss values are based on the epoch with the lowest test classification loss, namely
epoch 19. The expected result is that for a higher LEA weight the reconstruction
loss is lower. This confirms that in a joint training the AE objective helps to
encourage a reconstructible output. Therefore the AE objective strengthens the
preservation of information about the input data. Contrary to the reconstruction
loss, the classification loss is lower for a lower LEA weight. Since the AE objective
operates as a regularization to the classification objective, it is expected that it
has an impact on the classification performance. The results suggest that the
classification performance generally is better without the auxiliary AE objective.
This result is unexpected since this auxiliary objective is supposed to support the
classification objective.

This evaluation does not show a positive correlation between the AE objective
and the classification objective. With the right balance, both objectives can be
pursued without significantly harming the other. It can be observed that increasing
the LEA weight further than 1× 10−1 does not result in any further improvement in
reconstruction quality. The reverse seems true for the classification performance,
decreasing the LEA weight further than 1× 10−1 does not lead to a significant
improvement in test loss. Therefore, a LEA weight of 1× 10−1 is the sweet spot
in which both objectives are well optimized. Interestingly, the training loss of
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Figure 5.8: Observation of the correlation between the classification and AE objective
in terms of classification and reconstruction loss on the CIFAR-10 dataset. While the
classification loss (blue) increases for higher LEA weights, the reconstruction loss (orange)
decreases.

the classification is more affected by the change in LEA weight. It seems that a
higher LEA weight leads to lower overfitting. This is also true for a LEA weight of
1× 10−1. A LEA weight, therefore, encourages the preservation of information and
improves the overfitting behavior while not hurting the classification performance.
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Discussion

The implementation developed for the evaluation of the LEA records many met-
rics. A clear and flexible implementation was the priority to make continuous work,
experiments, and analysis easier. Both, the recording of metrics and the flexible im-
plementation, are at the expense of training time. Compared to CNN like baselines,
the training took up to 10 times as long. This is especially true for larger image
inputs and larger window sizes. Without optimization to runtime performance,
this makes experiments with larger datasets like ImageNet difficult. Another point
related to this issue is the performance comparison of this operation. The results of
this work compare performance by epochs. This is reasonable in that it compares
models on the base of training repetitions. It makes the comparison of models
independent to hardware and software related variations. However, inference time
matters in real-world applications where a model with faster computation time
might be preferred. This was not the focus of this work and computation times
neither for the training nor for inference are reported. Nonetheless, there is a lot
of optimization potential that could decrease the computation time of this imple-
mentation. Especially for inference, the LEA can have a significant speed-up by
removing the decoder path that is only needed during training.

As mentioned before, the reported performance on the used datasets in terms of
accuracy and loss is nowhere near the state-of-the-art. In light of this work that is
not an issue. The models are simple and no additional tricks, which are common
in state-of-the-art models, are used. This helps to avoid side effects and therefore
to ensure that reported results are due to the LEA and not based on other already
proven techniques. This also helps to reduce the training time and makes research
more efficient. The shown results are also valid for smaller more simpler models
and do not rely on large state-of-the-art architectures. However, this leaves open
how the LEA performs compared to or with state-of-the-art models and for that
matter if it is competitive at all.

On a similar note, another shortcoming is that this work evaluated the LEA only
on toy datasets. To evaluate ML models, datasets like MNIST, Fashion-MNIST,
CIFAR-10, and dSprites are commonly used based on their ease of use. It could
be argued that these datasets are too simple and do not reflect current real-world
problems, i.e. implying that an ML model that worked well on these datasets fails
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when applied to real-world problems. However, analyzing the effects of the LEA
on toy datasets is not an issue. What is an issue, is that for the analysis of the
encoding and especially the disentangling process these datasets might not be the
perfect fit. These processes start to get interesting when the encoding is done
for larger windows containing whole objects. However, the image size of the used
datasets is too small to allow larger windows and these images do not contain larger
subobjects. To research the capabilities of local unsupervised learning it could help
to use a dataset with images that contain a fixed set of subobjects which appear
repeatedly within the same images.

Optimizing for a better disentanglement within the code turned out to be very
difficult. The existing metrics for disentanglement, the BetaVAE metric (Higgins
et al., 2017), the Separated Attribute Predictability score (Kumar et al., 2017), the
Mutual Information Gap (Chen et al., 2018), the DCI Disentanglement (Eastwood
and Williams, 2018), and the FactorVAE metric (Kim and Mnih, 2018), use the
dataset’s ground truth generative factors to measure disentanglement. Simply put,
the expectation is that the data is disentangled into the generative factors and if
these are known, the degree of disentanglement can be measured. In other words,
these disentanglement metrics only work supervised. Even though the generative
factors of the dSprites dataset are known, these are not the required factors to
measure the degree of disentanglement with respect to the LEA. These generative
factors are only the explanatory factors of the highest hierarchy but local explana-
tory factors are unknown. Given any number of hierarchical levels, this is true for
all datasets. Locatello et al. (2018) state that there is currently no unsupervised
disentanglement metric that helps to optimize hyperparameters and that super-
vision is necessary. The code maps of the LEA, are theoretically ideal to detect
disentanglement via supervision in the form of manual interpretation. First of all,
images are one of the best interpretable data formats, second of all every code map
should represent an explanatory factor in a well-disentangled representation. While
this seems to be true, it is not clear how different disentangled code maps compare.
Given two relatively similar code maps or both show different but seemingly mean-
ingful (interpretable) results, then there seems to be no clear method to assess one
of both code maps to be better disentangled. An unsupervised disentanglement
metric that is independent of the ground truth explanatory factors is needed.

The empirical results of this work could neither prove nor disprove the usefulness
of disentanglement for supervised tasks. Bengio et al. (2013) suggest that disentan-
gled representations lead to a decreased sample complexity for supervised learning
tasks. Contrary to this, Locatello et al. (2018) could not find evidence that better
disentanglement measured by the above-mentioned disentanglement metrics leads
to a decreased sample complexity. van Steenkiste et al. (2019) countered that by
providing empirical results on what basis they claim compelling evidence that bet-
ter disentanglement leads to a decreased sample complexity. While this work can
report a better overfitting behavior for models trained with fewer data and dis-
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entangled representations and also a decreased sample complexity, the respective
supervised learning performance was not sufficient. These results could get more
conclusive in the future when better disentanglement methods are developed.
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Conclusion and Future Work

In direct comparison with max-pooling, the LEA does learn a slightly better re-
duction function in terms of forwarding task-relevant information. For larger code
lengths the LEA outperforms max-pooling, except for small window sizes. The
usage of larger windows allows for a greater dimensionality reduction. This work
provides interesting insights into how CNNs handle transformations. The empirical
results show that CNNs are equivariant and not invariant to spatial transformations
like translation and scale. Only the very last layer drops all spatial information and
reduces the information to the expected output results. Evidence for a decrease in
sample complexity for a supervised task could be found. The LEA did not show
significant improvements for the robustness against adversarial attacks.

This work confirms that learning to discriminate explanatory factors through
unsupervised disentanglement is possible. While this work could not show the
learning of a hierarchical structure of subobjects, the learned code maps did show
coherent patterns and therefore some kind of feature encoding. The results prove
that the disentanglement of local representations can be pursued without worsen-
ing the respective supervised performance. However, the empirical results of this
work show that stronger restrictions on the local representations with respect to
the reconstruction and disentanglement objective do not correlate with a better
classification performance. Nonetheless, unsupervised disentanglement is still a
challenging and unsolved problem. The LEA could greatly benefit from stronger
disentanglement techniques. Considering the current state-of-the-art, it seems that
disentanglement is still not understood very well and that it mostly depends on hu-
man interpretation. Research should be made to properly define disentanglement
in a way that it is measurable without the need for supervision. This would lay the
foundation for future research on techniques competing and improving the state-
of-the-art. Subsequently, further research is necessary to prove that interpretable
explanatory factors of hierarchical subobjects are useful and learnable through the
proposed LEA operation. Further research should restrict the LEA as much as
possible for an analysis independent of other side effects. This research should an-
swer the question if explanatory factors for intermediate representations improve
the discrimination of higher-order objects. To answer that question a special toy
dataset containing labels for every level of hierarchies that has a challenging ob-
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jective while having a minimum of side effects should be generated. It is an open
question how this dataset and the corresponding objective should look like.

The LEA shows an improved equivariance to spatial transformations that is prob-
ably due to the pixelwise reconstruction objective. The observed equivariance to
translation and scale in CNNs could solely be based on the windowing function.
In other words, it is unclear if equivariance to spatial transformations is useful for
the joint supervised task. A hierarchical structure of objects could also be repre-
sented by neighborhood relations invariant to the global spatial transformations.
Especially the disentanglement could improve since it would not need to forward
spatial information. In future work, it would be highly interesting to investigate
the effect of using a semantic-based instead of a pixelwise reconstruction loss for
the AE training. Techniques like the Siamese network (Bromley et al., 1994) or the
VAEGAN (Larsen et al., 2016) could be used as a similarity metric. The semantic
reconstruction objective could be supported by using spatial transformers (Jader-
berg et al., 2015) for the training of the similarity metric. This could be extended
to a split of the code into semantic and spatial information. The semantic pathway
could be used as a shortcut connection to the spatial pathway for the discarding of
semantic information.
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Supplementary Material

A.1 Training Configurations

The graphics and plots shown in this work resulted from the following training
configurations. For gradient optimization, the Adam optimizer with a learning
rate of 1× 10−4 did show the most stable results and therefore was used for all
experiments. The convolutional layers and LEAs were used with zero-padding so
that no input values are dropped. All layers were used with the ReLU activation
function to allow unrestricted positive values. If not specified otherwise, datasets
were unlimited, meaning that the training was performed on the whole dataset.
The batch size was 256 for MNIST, 128 for Fashion-MNIST and CIFAR-10, and 64
for dSprites. If hyperparameters are not specified in the individual configurations
listed below, they are set to the default values as defined by TensorFlow. If other
details are not mentioned below, the implementation details as explained in this
work applies.

Figs. 3.3 to 3.5 of the AE evaluation are based on an AE training over 800 epochs
on the Fashion-MNIST dataset and with a code length of 10. All AE types are used
with default parameters for the standard AE and the VAE, with a = 1.3 and the
top-5 activations for the k-sparse AE, and a scale of 5 and a capacity control value
of 20 with a linear increase for the capacity-controlled VAE. All encoder-decoder
variants are used with default parameters for the fully-connected and 32 kernels for
the convolutional and spatial broadcast variants.

Figs. 4.1 and 4.2 show examples of the reconstruction and classification metrics
that are based on an alternate CNN-LEA training over 20 epochs on the dSprites
dataset. As AE type the VAE with a fully-connected encoder-decoder and a code
length of 5 is used. The LEA uses a window size of 4×4 px and a stride of 2×2 px.

Fig. 4.3 shows examples for the confidence visualization are based on an alternate
CNN-LEA training over 100 epochs on three datasets. The used AEs use a fully-
connected encoder-decoder with a code length of 10. The LEA uses a window size
of 4×4 px and a stride of 2×2 px. While for the Fashion-MNIST dataset a standard
AE is used, for the CIFAR-10 and MNIST dataset a capacity-controlled VAE with
a scale of 10 and a capacity control value of 25 with a linear increase is used.

Fig. 5.1 shows examples for adjustments of the code of an AE trained over 600
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epochs on the dSprites dataset. The used AE is a capacity-controlled VAE with a
scale of 10, a capacity control value of 25, an increase over 100 epochs and a code
length of 10. The encoder-decoder is the spatial broadcast with 64 kernels.

Fig. 5.2 shows the 10 code maps of a LEA with a window size of 4×4 px and
a stride of 1×1 px. It uses a fully-connected encoder-decoder. For the CIFAR-10
dataset, a capacity-controlled VAE with a scale of 10, a capacity control value of
25 is trained over 200 epochs with an increase over the first 25 epochs. For the
dSprites, Fashion-MNIST, and MNIST dataset a capacity-controlled VAE with a
scale of 10, a capacity control value of 25 is trained over 800 epochs with a linear
increase.

Fig. 5.4 shows the loss in spatial information over multiple layers by using the
known generative factors of the dSprites dataset. The network under test is a
CNN-LEA using a VAE with fully-connected encoder-decoder, a code length of
10, a window size of 4×4 px, and a stride of 2×2 px. Alternate training of the
CNN-LEA is done for 50 epochs. The spatial classifier is trained for 20 epochs.

Fig. 5.5 shows the comparison against max-pooling in a per window size com-
parison. Alternate training of both methods on the dSprites dataset is done for
100 epochs. The two AEs, the VAE, and the standard AE are evaluated using a
fully-connected encoder-decoder. The comparison is performed for a code length of
one and a code length of 10. The window sizes 2, 4, 8, 16, 32, and 64 are evaluated.
For all window size results, the stride was equal to the respective window size.

Fig. 5.6 shows the test on the sample complexity. Alternate training of the CNN-
LEA is done for 20 epochs on the dSprites dataset. A VAE with a fully-connected
encoder-decoder, a window size of 4×4 px, a stride of 2×2 px, and a code length
of 5 is used. In independent runs, the dSprites dataset is limited to 10, 500, 5000,
and 50 000 samples.

Figs. 4.5, 5.7 and A.1 show heatmaps for the comparison of robustness against
adversarial attacks. The CNN-LEA configurations were evaluated on their robust-
ness after an alternate training on the dSprites dataset for 100 epochs. The LEA
used a window size of 4×4 px, a stride of 2×2 px, and a code length of 10. As AEs
the standard AE, the VAE, and the capacity-controlled VAE with a scale of 10, a
capacity control value of 25, and a linear increase are used. All encoder-decoder
variants are evaluated.

Fig. 5.8 shows the effect of adding the AE objective as an auxiliary objective to
a supervised task. This is evaluated by jointly training an AE for 200 epochs on
the CIFAR-10 dataset. A capacity-controlled VAE with a scale of 10, a capacity
control value of 25, an increase until epoch 25, a fully-connected encoder-decoder,
a window size of 8×8 px, a stride of 4×4 px, and a code length of 10 is used.
The LEA weight is set to 1× 102, 1× 101, 1, 1× 10−1, 1× 10−2, 1× 10−3, and
1× 10−4. Only the results of epoch 19 are shown.
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A.2 Inconclusive Robustness Results

The difference in perturbation distance between all models for every attack is minor.
Visualizing the existing differences, as in Fig. A.1 is made worse by different attacks
resulting in different scales for the perturbation distance. Comparing all models and
all attacks with each other with a color range for the perturbation distance simply
highlights the attack with the highest perturbation distances. Minor differences in
perturbation distance are lost. Only the success rate shows major changes for the
Single Pixel attack.
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Figure A.1: A heatmap of the robustness against adversarial attacks with colorization
by perturbation distance and circle size by success rate. All minor differences are mostly
lost. Evaluated on the dSprites dataset. Smaller and darker circles are better.
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Abbreviations

Adam adaptive moment estimation

AE autoencoder

ANN artificial neural network

BagNet deep bag-of-features model

CNN convolutional neural network

CPU central processing unit

ELU exponential linear unit

GPU graphics processing unit

KL Kullback–Leibler

LEA locally embedded autoencoder

MAE mean absolute error

ML machine learning

MLP multilayer perceptron

MSE mean squared error

MTL multi-task learning

RAM random-access memory

ReLU rectified linear unit

SGD stochastic gradient descent

UI user interface

VAE variational autoencoder
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